
X86_64 vs Aarch64 Performance
Validation with COTSon
Marco Procaccini,1, Roberto Giorgi,

Department of Information Engineering and Mathematics, University of Siena, Via
Roma 56, 53100 Siena, Italy

ABSTRACT

In this study, we provide a set of architectural parameters for the HPLabs COTSon simulator that
can be used to model existing processors, such as the Intel i7700 (X86_64 architecture) and the ARM
A53 (Aarch64 architecture). We carry out an initial validation, by comparing the execution time
while performing the weak scaling of the architecture, in the case of two common benchmarks.
We use the Recursive Fibonacci and Matrix Multiplication benchmarks for simplicity. By using the
simulator, we can then further study the sensitivity of the architecture and derive which features
may matter most to evaluate the performance. Our goal here is to verify that the COTSon simulator
can be used to model both the X86_64 and Aarch64 architectures. Based on this validation study,
we have the possibility to analyze the bottlenecks and desirable microarchitectural features of
modern architectures.

KEYWORDS: Performance Evaluation, Computer Architecture, Computer Simulation

1 Architectures Simulation

Architecture simulation is an important tool to understand the relation between the archi-
tectural features and the performance of the running application. It enables a fast and cost-
effective design space exploration, by allowing to simulate new architectural improvements
without requiring RTL abstraction level. However, the use of a generic simulator may not
help to reach the goal, since the simulation model may be too distant from the actual archi-
tecture [CAD09, ZYGP09].

We used the HP-Labs COTSon simulator, since it separates conveniently and neatly the
functional emulation from the timing simulation: the functional emulator is based on the
AMD SimNow virtual machine and it provides a complete list of events (i.e., instructions,
interrupts, etc.) to be processed afterwards in the timing simulator [AFF`09]. The functional
emulator part executes the instructions according to a particular Instruction Set Architec-
ture (X86_64 for the SimNow) and provides all the information about an instruction like
the instruction address, register, type, results, and memory address. The timing simulator
simulates the timing behavior of the instruction for a given hardware implementation. This
approach is called functional-directed, which gives us the possibility to have a cycle approx-
imate accuracy of the behavior of the X86_64 processor. We also wanted to have a confir-

1E-mail: {procaccini,giorgi}@dii.unisi.it



mation of the findings of previous studies, which discovered that the performance of ARM
and X86 does not depend on the specific ISA that is used, but rather it depends on the type
and quantity of resources that are included in the platform (e.g., cache, TLB, branch predic-
tor) [BMS13].

2 Evaluation and Results

In order to validate the COTSon simulation environment with the X86_64 architecture, we
selected two benchmarks: Recursive Fibonacci (RFIB) and Matrix Multiplication (MM). RFIB
is the recursive calculation of the Fibonacci number of a given n. To avoid too small threads,
the recursion stops as n becomes smaller than a certain threshold t. MM performs a matrix
multiplication by a triple nested loop on square matrix, where the matrix is partitioned in
sub-matrices, or blocks.

Table 1: Micro-Architecture Configurations

Parameter COTSon X86_64 Aarch64
Core 3 GHz, in-order super-scalar Core Intel i7700 Kaby lake

at 4.2 GHz out-of-order
Cortex A53 ARMv8-A at
1.5 GHz, in-order
superscalar

Branch
Predictor

two-level (history
length=14bits, pattern-history
table=16 KiB, 8-cycle miss
prediction penalty)

two-level (history
length=18bits, 17-cycles
miss prediction penalty)

global (3072-entries
pattern history table)
20-cycles miss prediction
penalty

L1 Cache Private I-cache 32KiB, private
D-cache 32KiB, 8-ways,
4-cycles latency

Private I-cache 32KiB
8-ways, private D-cache
32KiB 8-ways 4-cycles
latency

Private I-cache 32KiB
2-way, private D-cache
32KiB 4-ways 3-cycles
latency

L2 Cache Private D-Cache 256KiB,
4-ways, 10-cycles latency

Private D-cache 256KiB
4-ways 10-cycles latency

Shared D-cache 1MiB
16-ways 15-cycles latency

L3 Cache Shared 8MiB, 16-ways,
35-cycles latency

Shared D-cache 8MiB
16-ways 35-cycles latency

no

I-L1-TLB 4KiB pages, 64 entries, 4-ways
1-cycle latency

4KiB pages, 64 entries,
4-ways 1-cycle latency

4KiB pages, 10 entries
fully-associative 2-cycles
latency

D-L1-TLB 4KiB pages, 64 entries, 8-ways,
1-cycle latency

4KiB pages, 64 entries,
8-ways 1-cycle latency

4KiB pages, 10 entries
fully-associative 2-cycles
latency

L2-TLB 2MiB, 32 entries, 2-ways 2MiB, 32 entries 4-ways 4KiB, 512 entries, 4-ways

2.1 Experiments Setup

In order to facilitate the experiments and speed up the Design Space Exploration, we de-
veloped a set of tools (named "MYDSE"), through which is possible to easily configure the
COTSon framework, manage experiments and collect results by reducing the experimenta-
tion time from days/week to hours/minutes [GKP19]. Thanks to the MYDSE toolset it is
possible to define the complete micro-architecture of the processor by using a higher level
description and also indicate the desired values of the architectural parameters to be ex-
plored. The tools automatically generates the experiment points for the COTSon simula-
tor, distributes and manages the parallel simulation of the points on as many simulation



hosts as possible (e.g., in a cluster system). The MYDSE configuration file follows a simple
<key>=<value> syntax: if multiple values are specified, then the design space covers all the
indicated values. Moreover, it is possible to define other higher-level parameters of each ex-
periments (e.g.,OS image, applications and their inputs, the standard library to be used).

Initially, we validated the execution of the COTSon simulator against the Intel i7700 Core
by using the architecture parameters reported in the table 1. About the Aarch64 architecture,
we relied on the AXIOM-Board hardware specification, which is a single computer board
developed during the AXIOM-Project at the beginning of the 2017 [T`17,Gio,A`15,GBG`16,
Gio17]. To analyze the sensitivity to the input, we consider the weak scaling of the execution
time: the input size is chosen in such a way that any successive value generates a double
number of operations. For example, in the MM benchmark, the number of operations vary
as O(N3), where n is the size of the square matrix. Therefore, we have increased the size of
the matrix by a factor of 3

?
2.

30

240

252 320 400 504

Ex
ec

u
ti

o
n

 T
im

e 
(s

)

Input Size

MM b=4COTSon

Intel i7700

100

800

36 37 38 39 40

Ex
ec

u
ti

o
n

 T
im

e 
(s

)

Input Size

RFIB th=2COTSon
Intel i7700

100

800

6400

252 320 400 504

Ex
ec

u
ti

o
n

 T
im

e 
(s

)

Input Size

MM b=4 AARCH64 Cortex A53

COTSon

700

5600

36 37 38 39 40

Ex
ec

u
ti

o
n

 T
im

e 
(s

)

Input Size

RFIB th=2
AARCH64 Cortex A53

COTSon

Figure 1: Performance validation of the benchmarks Recursive Fibonacci (RFIB) with 2 as threshold
(th) and Matrix Multiply with 4 as block size (b) between the COTSon simulator, the Intel i7700 (top)
and the ARM Cortex A53 (bottom) architectures.

2.2 Results

The validation of the results is based on the comparison of the execution time of the se-
quential execution of the MM and RFIB benchmarks on the COTSon simulator with the two
target architectures: Intel i7700 for the X86_64 architecture and ARM Cortex A53 for the
Aarch64. As depicted in Figure 1, the COTSon simulation results follows quite closely the
weak scaling that is performed on the Intel i7700 and on the ARM Cortex A53 architectures,
for both the MM and RFIB benchmarks and for almost all the input range, once a "effective
frequency" correction is done.



3 Conclusion

In this paper, we illustrated how the COTSon simulation framework is capable to simulate
both X86_64 and Aarch64 architectures and obtain results very close to the real hardware,
by using the MM and RFIB benchmarks. Thanks to this validation, the COTSon simulator
gives us the possibility to analyze in depth the behavior of such architectures during the
execution of applications along with the related operating system activity Currently, we are
working on expanding the benchmark set (e.g, Cholesky factorization, radix sort, FFT, BFS).
with the aim to have a more consolidated validation of our initial findings.

References

[A`15] C. Alvarez et al. The AXIOM software layers. In IEEE Proc. 18th EUROMICRO-
DSD, pages 117–124, Aug. 2015.

[AFF`09] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and Daniel
Ortega. COTSon: infrastructure for full system simulation. SIGOPS Oper. Syst.
Rev., 43(1):52–61, 2009.

[BMS13] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. Power strug-
gles: Revisiting the risc vs. cisc debate on contemporary arm and x86 architec-
tures. In High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th In-
ternational Symposium on, pages 1–12. IEEE, 2013.

[CAD09] Jianwei Chen, Murali Annavaram, and Michel Dubois. Slacksim: a platform for
parallel simulations of cmps on cmps. ACM SIGARCH Computer Architecture
News, 37(2):20–29, 2009.

[GBG`16] R. Giorgi, N. Bettin, P. Gai, X. Martorell, and A. Rizzo. AXIOM: A Flexible Platform
for the Smart Home, pages 57–74. Springer, 2016.

[Gio] R. Giorgi. Scalable embedded systems: Towards the convergence of high-
performance and embedded computing. In EUC 2015.

[Gio17] R. Giorgi. AXIOM: A 64-bit reconfigurable hardware/software platform for scal-
able embedded computing. In IEEE 6th Mediterranean Conf. on Embedded Comput-
ing (MECO), pages 113–116, June 2017.

[GKP19] R. Giorgi, F. Khalili, and M. Procaccini. A design space exploration tool set for
future 1k-core high-performance computers. In ACM RAPIDO Workshop, pages
1–6, 2019.

[T`17] Theodoropoulos et al. The axiom platform for next-generation cyber physical
systems. ELSEVIER Microprocessors and Microsystems, pages 540–555, 2017.

[ZYGP09] Hui Zeng, Matt Yourst, Kanad Ghose, and Dmitry Ponomarev. Mptlsim: a sim-
ulator for x86 multicore processors. In 2009 46th ACM/IEEE Design Automation
Conference, pages 226–231. IEEE, 2009.


	Architectures Simulation
	Evaluation and Results
	Experiments Setup
	Results

	Conclusion

