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ABSTRACT

An important step before adopting a simulator is its validation, in order to determine how
accurate the simulator is compared to a real machine. When validating a simulator, errors in sim-
ulating full applications can lead to misleading conclusions. In this paper, an extension of the
existing tracing tool of the COTSon simulation framework is presented with the capabilities to
collect information about the executed instructions from both timing and functional execution
(e.g., timestamp, latency). The output trace has been compared with the assembly representation
of the benchmark executed into the COTSon simulator to verify the correct execution flow. Thanks
to the tracing tools, we were able to analyze the behavior of COTSon simulator during the execu-
tion of benchmarks and discover possible bottlenecks and optimization points.
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1 Simulation Framework

Research on high-performance computing architectures depends on accurate and flexible
simulation to enable the development of future generations of computer systems. Simula-
tors have become an integral part of the computer architecture research and design process.
Since they have the advantages of cost, time, and flexibility, architects use them to guide
design space exploration for analyzing the efficiency of new features not yet available in
the market [GKP19b]. A simulator not only ensures the functional correctness but also may
provide accurate timing information [PG19].

The HP-Labs COTSon simulator [AFF`09] is a full-system simulation from multi-core
(e.g., 1000 cores [GBB`14]) to multi-node and the capability of network simulation, which
makes COTSon a complete simulation environment [GKP19a,GKP19c,P`12,GSPF12]. COT-
Son is based on the functional directed simulation, which means that the functional part
drives the timing part, and the two parts are completely separated both in the coding and
during the simulation Figure 1. The functional model is very fast but does not include any
architectural detail, whilst the timing model is an architectural-complete description of the
system (and, as such, also includes the actual functional behavior).

The functional execution is driven and validated by the AMD SimNow virtualizer tool,
which is proposed by AMD in order to test and develop their processors and platforms.

1E-mail: {procaccini,giorgi}@dii.unisi.it



C
O

TSo
n

 C
o

n
tro

l In
terface

Timing Interface

Sampling driver

Timing 
Model 
1,2…n

Timing 
Model 
1,2…n

Timing 
Model 
1,2…,n

Devices

Network
Functional Models,
Congestion, …

Trace Collection,
Profiling, Hooks, … 

CPU, 
Memory,
Interconnects 
Timing-Models

Sampling, 
Interleaving, …

Time Synchronization, Simulation Parallelization,
Network Instrumentation, Network Statistics, …

Mediator instance
(Inter-node Network/Switch Model)

Disk, NIC, …

Timing Simulation

SimNow instance
(Node Functional-Model)

Core
1

Core
2

Core
N…

SimNow instance
(Node Functional-Model)

Core
1

Core
2

Core
N…

SimNow instance
(Node Functional-Model)

Core
1

Core
2

Core
N…

Functional Simulation

Figure 1: The COTSon simulation framework architecture.

COTSon executes its functional model into the SimNow virtual machine, running and test-
ing the execution of the functional model (green part of Figure 1). The timing model is
a formal specification that defines a custom behavior of a specific architectural or micro-
architectural component, in other terms the timing model defines the architecture itself
[AFF`09]. The timing model behavior is specified by modeling in C/C++ statements the
steps performed by the functional part and associating them with the estimated latency
(blue part of Figure 1).

The functional and timing model communicate each other through event queues. These
event queues decouple the generation of events by the functional simulator and their pro-
cessing by the timing models. The event queues implement a timing feedback mechanism
(e.g., instruction throughput), which periodically adjusts the speed of the functional simula-
tor for reflecting the timing speed. The feedback mechanism aims at limiting the functional
simulator’s divergence with respect to the timing simulator.

2 The Extended Tracing System

The COTSon simulator provides a tracings tool through which is possible the extraction of
information from the functional execution performed into the SimNow virtual machine. In
order to validate both functional and timing execution and analyze the effects on the simu-
lation produced by the communication between functional and timing models, we decided
to extend the existing tracing system of the COTSon simulator.

The extended tracing tool combines the information of the instructions produced dur-



ing the functional execution (e.g., virtual address, physical address) with the behavior of
the timing model Figure 2. The list of executed instructions is now ordered by the times-
tamp provided by the timing model, through which is possible the validation of the timing
execution. Additional information like the latency computed by the timing model for each
instruction gives us the possibility of highlighting possible improvements in the design pro-
cess (e.g., reducing the long-latency instructions with different architecture configurations).
Moreover, a report of statistics is generated for the tracking the behavior of the functional
and timing execution at the end of the COTSon intervals named "quantum". In fact, COTSon
makes the SimNow virtualizer tool run for a custom interval named "quantum" specified by
the user. Each quantum produces a stream of executed instructions, which are sent to the
respective CPU timing models by using event queues following the “feedback directed"
approach [AFF`09]. The tracing system collects statistics useful for understanding and an-
alyzing how the functional execution is modeled by timing model during each quantum
Figure 3.

Figure 2: Example of output produced by the tracing system tool for the COTSon simulator with a
Recursive Fibonacci benchmark.

Finally, the distorm disassembler tool [Dis] has been updated with the latest version
for supporting the translation of the latest version of the x86_64 instruction set. The dis-
torm gives us the possibility to have the mnemonic representation of an instruction, which
makes possible the comparison of the executed instruction with the assembly language of
the benchmark executed into the COTSon simulator.

Figure 3: Report produced at the end of each quantum by the tracing tool system for the COTSon
simulator. The report tracks information about the executed cycles and instructions into the Simnow
virtual machine (s_total_cycles, s_total_insts, s_total_idle, s_delta_cycles, s_delta_insts) and into the
timing model (t_cycles and t_insts).

3 Trace Analysis and Considerations

Thanks to the extension provided for the tracing tool of the COTSon simulator, it was possi-
ble to confirm the correct execution of both timing and functional model, which correctly
process the flow of instructions contained in the binary representation of a benchmark.
Based on the reports at the end of each quantum, it was possible to verify and analyze
how timing execution affects functional execution. As we can see in the Figure 3, the num-
ber of executed instructions in the SimNow virtual machine (s_delta_insts) is adapted to



the number of instructions executed into the timing models (t_insts) during the quantum.
However, the tracing tool highlights a peak of executed instructions (end cycles) during the
first quantum in both functional and timing model (Figure 3), which is caused by a lack of
timing model information at the beginning of the execution. The peak of performance in the
first quantum can produce harmful effects on the simulation results, such as a wrong analy-
sis of the power consumption. In order to solve this issue, we are investigating in an initial
warm-up phase, which can produce the necessary information for aligning the functional
and timing model from the beginning of the simulation execution.
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