
A Multi-Pronged Approach to Benchmark Characterization

Nikola Puzović∗, Sally A. McKee†, Revital Eres‡, Ayal Zaks‡, Paolo Gai§, Stephan Wong¶, and Roberto Giorgi∗
∗University of Siena

Siena, IT
{puzovic, giorgi}@dii.unisi.it

†Chalmers University of Technology
Gothenburg, SE

mckee@chalmers.se
‡IBM Haifa Labs

Haifa, IL
{eres, zaks}@il.ibm.com

§Evidence S.r.l.
Pisa, IT

pj@evidence.eu.com
¶Delft University of Technology

Delft, NL
J.S.S.M.Wong@tudelft.nl

Abstract—Understanding the behavior of current and future
workloads is key for designers of future computer systems.
If target workload characteristics are available, computer
designers can use this information to optimize the system.
This can lead to a chicken-and-egg problem: how does one
characterize application behavior for an architecture that is a
moving target and for which sophisticated modeling tools do
not yet exist?

We present a multi-pronged approach to benchmark char-
acterization early in the design cycle. We collect statistics from
multiple sources and combine them to create a comprehensive
view of application behavior. We assume a fixed part of the
system (service core) and a “to-be-designed” part that will
gradually be developed under the measurements taken on the
fixed part. Data are collected from measurements taken on ex-
isting hardware and statistics are obtained via emulation tools.
These are supplemented with statistics extracted from traces
and ILP information generated by the compiler. Although the
motivation for this work is the classification of workloads
for an embedded, reconfigurable, parallel architecture, the
methodology can easily be adapted to other platforms.

I. INTRODUCTION

At the start of any new architecture project, researchers
must make many crucial decisions, including what modeling
methods and tools to use for exploring the target design
space and what software workloads to employ to exercise
the architectures under study. This is especially tricky when
the architecture is being designed from the ground up: how
do we characterize workloads without a fixed ISA? How
do we assemble a suite of tools that provide enough data
to make well informed decisions? Here we present a case
study of how we address these issues for an architecture

that is a moving target. The project driving this work
addresses reconfigurable embedded architectures, but the
modeling challenges apply equally to platforms at all scales.
To bootstrap this research, we first chose a set of applications
of interest, and then devised a modeling strategy to derive
application characteristics that are relevant to the design of
our architecture. In so doing, we have pushed the QEMU
emulation toolset [1] further in a novel direction that expands
its sphere of influence from cross-platform emulation into
fast architectural modeling using Dynamic Binary Instru-
mentation (DBI) driven simulation. DBI tools are very fast
and flexible, and their use in architectural design (which is
currently quite rare) is likely to grow rapidly. Although we
are aware that the behavior of the new system will not be
identical to the one “under measurement”, our methodology
tries to extract initial design hints and other information that
can drive dynamic reconfiguration policies.

Since the project leverages prior work in reconfigurable
computing, some details of the target platform were de-
cided a priori. As target architecture for the accelerator,
we have chosen the VEX VLIW architecture. VLIW pro-
cessors require no complex hardware to extract parallelism.
Consequently, the hardware design can be kept simple to
allow for faster core frequencies and lower power consump-
tion. The embedded kernels or phases intended to be run
on an accelerator are likely to exhibit high parallelism,
and thus should achieve higher hardware utilization than
general-purpose VLIW cores. The parameterized ρ-VEX
processor [2] we use allows for further customization of
processor resources, e.g., register file sizes, functional units,

978-1-4244-8396-9/10/$26.00 c© 2010 IEEE

and execution pipelines. Finally, existing industrial strength
VLIW compilers can be leveraged in code scheduling.

We decided to use as our exploratory FPGA platform the
Virtex-6 ML605 Evaluation Kit, a fast board that comes
with verified reference designs, including a MicroBlaze core
and DDR-3 memory interface. PetaLogix offers a complete
Linux distribution, and QEMU can be configured to model
this board. Since design verification and software debugging
costs prohibit implementing every design point in hardware,
we use software tools for design space exploration.

At this point in the design, the challenge is to model the
target architecture as completely as possible, even though
information on some components is not yet available. This
is a common scenario for designers of systems at all scales.
The purpose of this work-in-progress report is to share our
experimental approach and to encourage conversations on
improving available tools and technologies for solving such
chicken-and-egg design problems.

II. CASE STUDY: ERA

One of the uses for the flexible approach we describe is to
characterize applications in order to expose the potential for
profitably reconfiguring the architecture at run time. This is
precisely the problem space targeted by the EU FP7 ERA
(Embedded Reconfigurable Architectures) project [3]. When
almost all aspects of the underlying architecture can be
reconfigured dynamically, this analysis helps to illuminate
possible benefits of such reconfiguration, and should guide
development of automated run-time mechanisms to trigger
reconfiguration. As an example, if analysis shows that two
applications have different characteristics with respect to
memory behavior (e.g., high temporal locality versus no
locality), the system could be reconfigured when switching
applications, and this should increase performance and/or
save power. Reconfiguration can also occur within an ap-
plication when consecutive intervals differ significantly. By
using what we learn from program analysis to develop
techniques for automatic reconfiguration, we hope to create
an ERA system that adapts itself to deliver high performance
while maintaining low power budgets.

III. ERA APPLICATIONS

The application set for this case study reflects common us-
age scenarios in an embedded system such as a smartphone.
The set includes image and video processing applications,
security programs, and object and image recognition soft-
ware (e.g., for augmented reality). Several of the applications
are already parallelized, and some have well defined high-
level QoS requirements that the architecture must meet.
• Jpeg compression/decompression is commonly used

in embedded systems: almost all smartphones contain
cameras and can convert raw data from the image
sensor to this format. Our code is from the MiBench
suite [4].

Figure 1. High level view of the ERA system

• H.264 (“MPEG4 part 10” or “MPEG-4 AVC”) is a
video coding standard that can provide high video
quality at lower bit rates [5]. It is used in high resolution
video (satellite, cable, or DSL broadcast), video storage
(HD-DVD, blu-ray disc), and internet. Our implemen-
tation comes from the PARSEC benchmark suite [6].

• The Elliptic Curve Digital Signature (ecds) algorithm
calculates digital signatures for received data (files) to
verify senders identities. This type of cryptography can
achieve security levels similar to RSA techniques with
keys that are five times shorter. Reference code is from
the Basicrypt suite [7].

• The Tesseract OCR engine (ranked in the top three en-
gines from the 1995 UNLV Accuracy Test) is probably
the most accurate open source OCR engine. It adapts to
a user’s handwriting. We adapt code from the Tesseract
project repository to omit the GUI and to measure the
recognition time.

• The yuv2rgb application reads a YUV video in-
put stream and outputs an equivalent RGB24-format
stream.

• MPEG2 decodes streams of frames encoded using the
lossy MPEG2 video/audio format [8] widely used in
digital television broadcast over the air and via cable
or satellite systems. It can be run as multiple threads.

• The AC3 decoder interprets streams of audio frames
encoded using high-quality, low complexity multichan-
nel AC3 audio [9]. By coding multiple channels as a
single entity, it can operate at lower data rates. Our
implementation is parallel.

• Susan, from the MiBench suite [4], recognizes edges
and corners in Magnetic Resonance Images of the brain.
Our version is parallelized with OpenMP.

IV. METHODOLOGY

We collect statistics from different sources and combine
them to give a more complete view of the behavior of each
application. Since the exact model of the architecture is not

known, there exists no simulator that we can use in our
study. This is not entirely problematic, since we want to
capture behavioral characteristics that are as architecture-
independent as possible, so that data derived from modeling
the control processor will be valid also for accelerators
(e.g., even if the architecture changes, measured memory
behaviors should be similar).

As an initial design, we assume a fixed part of the system
(the service core) and several “to-be-designed” parts. The
latter will be developed to exploit application characteris-
tics that represent performance enhancing or power saving
opportunities, and to address characteristics that can hinder
our ability to deliver high performance at low power. For
instance, “to-be-designed” parts may include accelerators, a
network-on-chip (NoC), or a memory hierarchy.

The QEMU emulator executes cross-compiled programs
on top of an operating system. The guest platform can be
configured to closely match the target system. For example,
in the case of embedded systems, reasonable guest platforms
could be either a MicroBlaze soft core or an ARM, but in the
case of general purpose platforms, the i386 guest platform
makes more sense. Here we use a QEMU configuration that
mimics the ML605 hardware, with a software MMU unit
and no FP units.

Whole-program statistics are used to make the broad ini-
tial decisions that will classify benchmark behavior (e.g., as
memory intensive vs. computation intensive), while interval-
based statistics are further processed to see how applica-
tion behavior changes during execution. Phase detection
techniques [10] enable us to group intervals into clusters:
intervals from the same cluster should show very similar
statistics, while ones from different clusters should not. We
modify QEMU to generate statistics that can be used to drive
phase detection (much like Lau et al. [11]). This gives an
additional dimension to our benchmark classification, since
we can group benchmarks according to their potential for
exploiting the reconfigurability of the architecture; e.g., we
may be able to save power by switching off cache lines
during intervals with low memory activity or little temporal
locality [12].

Another interesting avenue of investigation is the use
of real hardware to extract statistics and to strengthen the
results obtained from emulation. For instance, the ML605
board can be used together with the Lauterbach [13] tracing
tools. Lauterbach traces only give information on memory
references (connected with source code), while QEMU al-
lows us to gain insight into the complete state of the em-
ulated hardware. Nonetheless, the hardware traces provide
one means of validating QEMU results.

Since QEMU is an emulator, it does not allow the user to
generate statistics related to the behavior of the microarchi-
tecture (e.g., cache miss rates, or available ILP). In order to
obtain these, we must consult other sources of information.
For instance, we rely on compiler tools that give an estimate

of the available ILP in the application based on instruction
schedules for VLIW and superscalar architectures.

The ILP of an application is limited by machine inde-
pendent and machine dependent factors. The former relate
mainly to the amount of ILP inherent in the application’s
source code, while the latter relate to the resource constraints
of the architecture on which we are running. To classify
applications according to their ILP the hot code is first
extracted using standard profiling tools (oprofile, gcov) on
standard platforms (PowerPC, x86). Then we try to estimate
the ILP in the hot code by examining the code generated
by gcc for different architectures; for example, VLIW code
produced for VEX, code generated for superscalar architec-
tures, and code generated for vector architectures. In this
stage gcc can be modified to assume larger issue rates and
more machine resources than these platforms actually have.
This allows us to focus on gcc’s ability to extract ILP in
the hot code, exposing issues which might suppress it (i.e.,
aliasing) while minimizing the machine-dependent factors.
These experiments can be refined as additional parameters
of the (micro)architecture become available.

The next challenge is combining the various statistics in a
meaningful way. This is easy for statistics on whole-program
execution. Putting together statistics from separate execution
intervals is more difficult: different tools often have different
notions of time, and there can be a mismatch between the
interval boundaries. QEMU does not know how many cycles
it takes to execute a program. However, we can instead use
the number of executed instructions to represent a unit of
time. The compiler cannot estimate the time of execution
at all, but tracing tools can give a detailed report on the
elapsed number of cycles. The common denominator that
can be used to unify statistics gathered from these sources
is the source code: in all cases the statistics can be linked
back to the statements whose execution generated them. The
intervals during execution can be connected via the source
code of the application, and this can be used to match start
and end times of intervals: for example, if we know that
during a certain interval in QEMU we are executing the code
from function foo(), the information about this function that
is extracted from the compiler can be bundled together with
the statistics being collected.

V. METRICS

Hoste and Eeckhout [14] show that hardware performance
counters (which are microarchitecture-dependent) can be
misleading: even if they show similarity between programs,
underlying behaviors may be different. We therefore rely on
microarchitecture-independent metrics for program charac-
terization. New statistics can easily can be added later.

Memory behavior is characterized using working set sizes,
memory access strides, and reuse distances [15]. These
statistics do not depend on the underlying microarchitecture,
and they can be used to estimate the impact of the memory

system implementation on the overall performance (e.g.,
reuse distances can be used to estimate cache miss rates).
Working set size is the number of words (or pages) touched
during execution. For memory strides and reuse distances,
we create frequency histograms. We calculate strides both
locally (address stride between two consecutive executions
of the same instruction) and globally (address stride between
two consecutive accesses to memory).

We also need to characterize the impact of the pro-
cessor architecture on execution. In this first analysis we
use register degree-of-use and register dependency distance.
Degree-of-use is calculated as the number of reads between
two consecutive writes. Dependency distance is the number
of instructions executed between writes and reads to a
register. This information can help in assessing whether
implementing data-forwarding techniques can be effective.

Another metric that can characterize the requirements of
the processor is instruction mix. This is calculated by count-
ing the different opcodes encountered during a program’s
execution and grouping them according to instruction type
(e.g. ALU, memory).

VI. CONCLUSIONS

We have modified QEMU to produce the above metrics
and have performed initial characterization of our bench-
marks using both the emulator and various compiler tools.
It turns out that the potential for reconfiguration is high
in all tested applications, and our tools are able to report
this fact. However, we still get some “false positives” in
terms of reconfigurability: statistics from QEMU processing
SimPoints sometimes reports differences among intervals in
cases where the differences are not actually of interest. For
example, SimPoint might classify two intervals as different
based on the number of memory accesses, but if almost all
memory accesses exhibit high spatial locality the phases are
actually similar in terms of opportunities for reconfiguration.
This highlights the problem of selecting the correct metrics
for classification.

Some of the applications (x264 and Tesseract-OCR) show
a flat profiling histogram, meaning that no outstanding hot
function exists, and this makes it hard to estimate the ILP
available in these applications. This might be an indication
that the programs are well optimized, or that the selected
datasets are not representative: different inputs might reveal
different behavior, and we will investigate this problem in
the remainder of the project.

ACKNOWLEDGMENT

This work is supported by the European Commission FP7
collaborative project ERA #249059.

REFERENCES

[1] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in Proc. USENIX Annual Technical Conference, FREENIX
Track, Apr. 2005, pp. 41–46.

[2] S. Wong, T. van As, and G. Brown, “ρ-VEX: A reconfigurable
and extensible softcore VLIW processor,” in Proc. IEEE In-
ternational Conference on Field-Programmable Technologies
(ICFPT08), Dec. 2008, pp. 369–372.

[3] (2010) ERA – Embedded Reconfigurable Architectures.
[Online]. Available: http://www.era-project.eu/

[4] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “MiBench: A free, commercially representa-
tive embedded benchmark suite,” in Proc. IEEE 4th Workshop
on Workload Characterization, Dec. 2001, pp. 3–14.

[5] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC Video Coding Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560–576, 2003.

[6] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implica-
tions,” in Proc. of the 17th International Conference on Par-
allel Architectures and Compilation Techniques, May 2008,
pp. 72–81.

[7] I. Branovic, R. Giorgi, and E. Martinelli, “A workload charac-
terization of elliptic curve cryptography methods in embedded
environments,” ACM SIGARCH Computer Architecture News,
vol. 32, no. 3, pp. 27–34, 2004.

[8] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder,
K. Akagiri, H. Fuchs, M. Dietz, J. Herre, G. Davidson,
and Y. Oikawa, “ISO/IEC MPEG-2 advanced audio coding,”
Journal of the Audio Engineering Society, vol. 45, no. 10, pp.
789–814, 1997.

[9] M. Davis, “The AC-3 Multichannel Coder,” in Audio Engi-
neering Society Convention 95, Oct. 1993.

[10] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “SimPoint
3.0: Faster and more flexible program phase analysis,” Journal
of Instruction Level Parallelism, vol. 7, Sep. 2005.

[11] J. Lau, S. Schoemackers, and B. Calder, “Structures for phase
classification,” in Proc. IEEE International Symposium on
Performance Analysis of Systems and Software, 2004, pp. 57–
67.

[12] M. Alioto, P. Bennati, and R. Giorgi, “Exploiting locality to
improve leakage reduction in embedded drowsy I-caches at
same area/speed,” in Proc. IEEE International Symposium on
Circuits and Systems, May 2010, pp. 37–40.

[13] Lauterbach. (2010) Microblaze debugger
and real-time trace. [Online]. Available:
http://www2.lauterbach.com/pdf/debugger microblaze.pdf

[14] K. Hoste and L. Eeckhout, “Microarchitecture-independent
workload characterization,” IEEE Micro, vol. 27, no. 3, pp.
63–72, 2007.

[15] K. Beyls and E. D’Hollander, “Reuse Distance as a Metric
for Cache Behavior,” in Proc. IASTED Conference on Parallel
and Distributed Computing and Systems, vol. 14, 2001, pp.
350–360.

