
A Data-Flow Approach To Accelerate
Real-Valued Fast Fourier Transform
Amin Sahebi∗‡,1, Lorenzo Verdoscia†2,
Roberto Giorgi†,3

∗ Università degli Studi di Siena, Siena, Italy
† Institute for High Performance Computing and Networking, CNR, Naples, Italy
‡ Università degli Studi di Firenze, Firenze, Italy

ABSTRACT

This paper presents a new methodology to exploit the benefit of using twiddle factor symmetry
feature in a Data-Flow model of real-valued fast fourier transform —RFFT. Since there are many
other libraries and benchmarks specifically working on FFT, its worthwhile to investigate the new
algorithm in this area. We show in this paper a mindset of efficient FFT according to rearranging
and due to interesting features of complex numbers to diminish the output delay time for 8-point
FFT. In particular, we show using data-flow specification in a FFT application can lead a better
execution time in comparison to the famous currently used libraries and algorithms.

KEYWORDS: FFT Algorithm, Data-Flow Program Graph, Real-Valued FFT

1 Methodology and background

A Fast Fourier Transform (FFT), introduced by J. W. Cooley and J. W. Tukey in the mid 1960s
[CT65], known as Decimation-in-time (DIT) and later Discrete Fourier Transform (DFT). In
theory, by assuming xn as a complex N-point finite sequence value for input signal, the DFT
is defined as:

Xk =
N−1∑
n=0

xn · e−j
2π
N

kn, k = 0, 1, . . . , N − 1 (1)

Where, e−j
2π
N

kn can be replaced by W kn
N as called "twiddle factor", referred to the root-of-

unity complex multiplicative constants which rotates in increments in order to number of
samples, N [MGS66].
According to Eq. 1, a direct computation of an N-point DFT needs O(N2) complex multipli-
cations and addition/subtraction numbers. Moreover, as the property of in-place memory
addressing, this algorithm used by many currect FFT works [CQYC05]. Briefly, many tradi-
tional algorithms which are based on Cooley-Tukey algorithm, are computing even-indexed

1E-mail: sahebi@diism.unisi.it
2E-mail: lorenzo.verdoscia@cnr.it
3E-mail: giorgi@dii.unisi.it

×

Figure 1: Butterfly demonstration for traditional DFT

and odd-indexed according to Eq.2 and then integrating them to the output by considering
that twiddle factors features such as, Periodicity, Symmetry and Recursion [LV19].

Xk =
N−1∑
n=0

xn.W
kn
N =

(N/2)−1∑
n=0

x2n.W
kn
N/2︸ ︷︷ ︸

DFT of even-indexed EK

+WN
k

(N/2)−1∑
n=0

x2n+1.W
kn
N/2︸ ︷︷ ︸

DFT of even-indexed OK

(2)

By considering the DFT of Even-indexed of x2n by EK and the DFT of Odd-indexed x2n+1

by OK . Therefore we can rewrite the Eq.3 as called butterfly demonstration in this context as
shown in Fig. 1.

Xk = Ek +WN
k Ok

Xk+N/2 = Ek −WN
k Ok

(3)

Previous studies fully covered the butterfly radix-r (e.g radix-2, 4) and the principals of
the FFT about the mathematical backgrounds and also hardware implementation. Moreover,
to achieve the purpose to reduce the number of this operations there are good studies in Eq.2
such as [GPG09, Duh86, JF07, SJHB87, GC14, CQYC05].
In the next section we describe why we chose Data-Flow for FFT calculation and we propose
a new approach with take advantage of reducing operations based on arithmetic studies.
The organization rest of this study describe our proposed method, then the evaluation com-
parison in the experimental setup and compare it to other well-known libraries finally we
speak about conclusion and our future works.

2 Methodology

In Data-Flow architecture, as shown in Fig.2 the structure of the system, here FFT algorithm,
is seen as a series of transportation of sequentially sets of ipnut data, where data and op-
erations are independent of each other. So in this context we exploit this feature when data
enters in to the system and then flows through the algorithm procedure one at a time they are
assigned to the determined destinatation. According to this fact, in the Fig.3, we proposed
our approach for a DFT 8-point algorithm. In detail, if investigate more in the algorithm
can be observed that it considers the bit-reversal function for a specific input data, then in
the line 6 and 7, the effect of using this feature that multiplication by (−j) can be replaced
by exchanging the real and Imaginary parts and just modifying the signs. The implemen-
tation of this algorithms are deposited in a general repository [RFF]. and we did not apply
symmetry and redundancy aspect of the behavior to calculating the 8-point FFT output. In
Fig.4 Pseudo algorithm [SGJ08] is a depth-first recursive radix-2 DIT Cooley-Tukey FFT to
compute a DFT of a power-of-two size n = 2m. In addition we have to consider that this
algorithm is an out-of-place inputs and produces in-order output data, so in this algorithm

which is considered as FFTW algorithm plans does not include a separate bit-reverse oper-
ations [SGJ08], indeed, FFTW use a planner to adapt its algorithms based on the hardware
configuration, so FFTW in this step returns a "reasonable" plan, and as they mentioned is not
necessarily the fastest way [FJ05]. A plan is an executable data structure that accepts input
data and computes the desired DFT.

Input Data Structure

INPUT SPACE

OUTPUT SPACE

+- ×

Output Data Structure

Data-Flow Elements

Figure 2: A Data-Flow
scheme of the FFT algorithm

1: 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: ← 𝑭𝑭𝑻(𝑥𝑛 , 𝑁)

2: 𝑥 𝑛 ← 𝑏𝑖𝑡_𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑥𝑛)

3: for 0 to N/2 do

4: 𝑥 2𝑛 ← 𝑥 2𝑛 + 𝑥 2𝑛 + 1

5: 𝑥 2𝑛 + 1 ← 𝑥 2𝑛 − 𝑥 2𝑛 + 1

6: 𝑰𝒎𝑥 3 ← −𝑹𝒆𝑥 3

7: 𝑰𝒎𝑥 7 ← −𝑹𝒆𝑥 7

8: for 0 to N/4 do

9: 𝑥 4𝑛 ← 𝑥 4𝑛 + 𝑥 4𝑛 + 2

10: 𝑥 4𝑛 + 1 ← 𝑥 4𝑛 + 1 + 𝑥 4𝑛 + 3

11: 𝑥 4𝑛 + 2 ← 𝑥 4𝑛 − 𝑥 4𝑛 + 2

12: 𝑥 4𝑛 + 3 ← 𝑥 4𝑛 − 𝑥 4𝑛 + 3

13: 𝑹𝒆𝑥 6 ← −𝑰𝒎𝑥 6

14: 𝑹𝒆𝑥 5 , 𝑹𝒆𝑥[7] ← 𝑤3
8(𝑹𝒆𝑥 5 − 𝑰𝒎𝑥[7])

15: 𝑰𝒎𝑥 5 , 𝑰𝒎𝑥[7]← − 𝑤3
8(𝑹𝒆𝑥 5 + 𝑰𝒎𝑥[7])

16:for 0 to N/2 do

17: 𝑥 𝑛 ← 𝑥 𝑛 + 𝑥 𝑛 + 4

18: 𝑥 𝑛 ← 𝑥 𝑛 − 𝑥 𝑛 + 4

19: 𝒓𝒆𝒕𝒖𝒓𝒏

Figure 3: RFFT algorithm
based on [LV19]

1: 𝒀 0, … , 𝑛 − 1 ← recfft𝟐 𝑛, 𝑿, 𝑡 :

2: IF 𝑛 = 1 THEN

3: 𝑌 0 ← 𝑋 0

4: ELSE

5: Y[0,…,N/2-1] ← recfft𝟐 𝑛/2, 𝑿, 2𝑡

6: Y[0,…,N-1] ← recfft𝟐 𝑛/2, 𝑿 + 𝑡, 2𝑡

7: FOR 0 to (n/2-1) do

8: Y[k1 ← Y[k1]+ 𝑤𝑛
𝑘1𝑌 𝑘1 + 𝑛/2

9: Y[k1+n/2]← Y[k1] − 𝑤𝑛
𝑘1𝑌 𝑘1 + 𝑛/2

10: END FOR

11: END IF

Figure 4: Recursive Cooley-
Tukey Pseudo Algorithm

3 Experimental Comparisons

According to [LV19] the experimental setup for the proposed 8-point modified RFFT was
3.6 GHz AMD Ryzen 7 1800x with GCC compiler Version 4.4.7. The time measurement and
accuracy which performed to acquire this results are based on using gettimeofday resolu-
tion, although already there are some cycle counters which can be configured due to the
operating system, it should be our future works to implement a precise hardware counters
to measure the correct time of execution however here the situation for all algorithms are
the same.

Table 1: Time Delay Comparison for 8-point Real Value FFT Implementations [LV19]
Algorithm Compiler Time (ns)

RecFFT GCC 348
FFTW GCC 248

Real Value FFT GCC 160

4 Conclusion and future works

We present a new Data-Flow approach to present a methodology for FFT algorithm to ac-
celerate the output time delay besides reducing the number of operations in compared to

other traditional algorithms. However the main goal of this approach is to provide a Data-
Flow program graph and generalize it in future works for any point FFT algorithm hope to
diminish the delay output time in comparison with other popular libraries such as FFTW.
In this work we consider the whole DPG of the 8-point FFT algorithm in the algorithm and
time measurement. Based on our expreiment results for 8-point FFT real-value input data
we achieved 1.5x faster to reach the outputs.

References

[CQYC05] Chu Chao, Zhang Qin, Xie Yingke, and Han Chengde. Design of a high perfor-
mance fft processor based on fpga. In Proceedings of the 2005 Asia and South Pacific
Design Automation Conference, pages 920–923. ACM, 2005.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[Duh86] P. Duhamel. Implementation of "split-radix" fft algorithms for complex, real, and
real-symmetric data. IEEE Transactions on Acoustics, Speech, and Signal Processing,
34(2):285–295, April 1986.

[FJ05] M. Frigo and S. G. Johnson. The design and implementation of fftw3. Proceedings
of the IEEE, 93(2):216–231, Feb 2005.

[GC14] N. Govil and S. R. Chowdhury. High performance and low cost implementation
of fast fourier transform algorithm based on hardware software co-design. In
2014 IEEE REGION 10 SYMPOSIUM, pages 403–407, April 2014.

[GPG09] M. Garrido, K. K. Parhi, and J. Grajal. A pipelined fft architecture for real-valued
signals. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(12):2634–
2643, Dec 2009.

[JF07] S. G. Johnson and M. Frigo. A modified split-radix fft with fewer arithmetic
operations. IEEE Transactions on Signal Processing, 55(1):111–119, Jan 2007.

[LV19] R. Giorgi L. Verdoscia, A. Sahebi. A data-flow methodology for accelerating fft.
The 8th Mediterranean Conference on Embedded Computing - MECO, 2019.

[MGS66] W M. Gentleman and Gordon Sande. Fast fourier transforms: for fun and profit.
Proc. AFIPS, 29:563–578, 01 1966.

[RFF] RFFT source code. https://github.com/AmintoreSahebi/RFFT. Ac-
cessed: 2019-05-02.

[SGJ08] M. Frigo S. G. Johnson. Implementing ffts in practice. 2008.

[SJHB87] H. Sorensen, D. Jones, M. Heideman, and C. Burrus. Real-valued fast fourier
transform algorithms. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, 35(6):849–863, June 1987.

https://github.com/AmintoreSahebi/RFFT

	Methodology and background
	Methodology
	Experimental Comparisons
	Conclusion and future works

