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ABSTRACT
Future computing systems (Teradevices) probably contain
more than 1000 cores on a single die. To exploit this par-
allelism, threaded dataflow execution models are promising,
since they provide side-effect free execution and reduced syn-
chronization overhead. But the terascale transistor integra-
tion of such chips make them orders of magnitude more vul-
nerable to voltage fluctuation, radiation, and process vari-
ations. This means reliability techniques have to be an es-
sential part of such future systems, too.

In this paper, we conceptualize a fault tolerant architec-
ture for a scalable threaded dataflow system. We provide
methods to detect permanent, intermittent, and transient
faults during the execution. Furthermore, we propose a re-
covery technique for dataflow threads.

1. INTRODUCTION
Nowadays, the number of transistors still increases, but

no longer with significant frequency enhancements and the
cost of extra power and power density. These facts open the
doors for new highly scalable computing systems with prob-
ably more than 1000 cores (Teradevices) and an increasing
need for exploiting such large amount of parallelism.

The International Technology Roadmap for Semiconduc-
tors [1] prognoses that a shrinking feature size and decreas-
ing supply voltage leads to increasing failure rates of up to
400% [30]. Also, complexity and costs for testing and veri-
fication of devices will increase. With the ongoing decrease
of the transistor size, the probability of physical flaws on
the chip, induced by voltage fluctuation, cosmic rays, ther-
mal changes, or variability in the manufacturing process will
further raise [30], making faults in present multi-core and fu-
ture many-core systems unavoidable.

While in mission critical systems fault-tolerance has al-
ways been essential, the architecture of a general purpose

processor is strongly influenced by economical constraints.
This requires fault-tolerance techniques able to scale with
the number of cores and the increasing failure probability
on a chip in conjunction with a reasonable architectural ef-
fort [5].

Threaded dataflow [9, 12, 31, 34] is known to overcome
the limitations of the traditional von Neumann architecture
by exploring the maximum thread-level parallelism of the
hardware and reducing the synchronization overhead. It is
not only a promising candidate to exploit parallelism in fu-
ture Teradevices, but can also serve as a basis for a fault-
resilient parallel architecture. The pure single-assignment
and side-effect free semantics of dataflow threads provide
an advantage for recovery and double execution techniques
compared to state-of-the-art von Neumann threads.

The contribution of this paper is the presentation of a
fault-tolerant architecture for a parallel and hierarchically
threaded dataflow system. In detail, we provide techniques
like redundant execution, control flow checking, and check-
pointing to cope with transient, intermittent, and perma-
nent faults on different architectural levels. Moreover, we
propose a lean recovery mechanism on thread-level.

The paper is organized as follows: in Section 2 we present
related work. For the convenience of the reader, we provide
different sections related to different fault detection mecha-
nisms. Section 3 describes the underlying dataflow architec-
ture. Based on this, we describe the fault detection exten-
sions in Section 4. The mechanism to recover from faults is
presented in Section 5, followed by a conclusion in Section
6.

2. RELATED WORK

2.1 Fault Tolerance in Macro Dataflow Archi-
tectures

The benefits of a side effect free execution model for fault
tolerance have already been studied in the context of dif-
ferent macro dataflow architectures. Nguyen et al. [19] pro-
posed a fault tolerance scheme for a wide-area parallel sys-
tem, considering a macro dataflow architecture built on top
of a wide-area distributed system. This differs from our ar-
chitecture as we target a single chip multiprocessor system
with hardware support for thread scheduling and fault tol-
erance.



Another technique by Jafar et al. [14] exploits the macro
dataflow execution model of KAAPI [8] for a checkpoint/-
recovery model. KAAPI uses a C++ library on commodity
chip multiprocessor clusters that exposes a dataflow pro-
gramming model. Since KAAPI is a software library the
model has to cope with the overhead usually introduced
with software fault tolerance techniques. Our work mainly
focuses on hardware fault tolerance schemes.

2.2 Redundant execution
The redundant execution of threads can take various forms

[6, 28]. We distinguish between spatial and temporal re-
dundancy. In the case of spatial redundancy, duplicated in-
stances of a thread are executed in parallel on separate hard-
ware. In a temporal redundant system, the threads execute
subsequently on the same hardware. Rotenberg [26] was the
first who used an SMT-capable processor for temporal re-
dundancy, which executes duplicated threads multithreaded
on one processor.

Mukherjee et al. [18] presented a combination of spatial
and temporal redundancy for an SMT-capable multi-core
system. Here, different threads are executed multithreaded
on one core and additionally the redundant threads are dis-
tributed to other cores.

Our redundant execution approach (see Section 4.6) com-
bines both temporal and spatial redundancy on thread-level
to detect permanent, intermittent, and transient faults.

2.3 Control flow checking
The detection of control flow errors has been an open re-

search topic for more than two decades [16]. The developed
approaches can be basically organized into three categories,
according to the implemented check mechanisms: Hardware-
based techniques [17, 21, 27, 33] extend a processor with an
additional hardware check unit, while software-based tech-
niques [3, 11, 20, 25] add redundant instructions to harden
critical parts of an application. Hybrid techniques [4, 24]
combine both hard- and software detection mechanisms. On
the one hand, such a hybrid mechanism should reduce the
high memory and execution time overhead of software ap-
proaches, on the other hand, the complexity compared to
pure hardware techniques is reduced as only parts of the
check mechanism must be implemented in hardware.

2.4 Rollback-recovery mechanism
Elonzahy et al. [7] divide rollback-recovery for message-

passing systems into checkpoint-based and log-based mecha-
nisms. Checkpointing depends on restoring a global system
state, while log-based mechanisms combine checkpointing
with logging of non-deterministic events.

Prvulovic et al. [23] and Sorin et al. [29] have both de-
scribed global checkpointing techniques with logging for the
rollback-recovery in a shared memory multiprocessor.

Since our execution model provides inherent checkpoints
between dataflow threads (see Section 3.2), we use a local
thread-restart mechanism without the need for restoring a
global state or the logging of events.

3. OVERALL ARCHITECTURE
Our assumed dataflow architecture and execution model

builds upon the Decoupled Threaded Architecture (version
for clustered architectures DTA-C) originally described in
[9]. DTA-C is designed to fully exploit the Thread-Level
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Parallelism (TLP) provided by future parallel systems. It
addresses scalability by a hierarchical structured execution
model. Although it is based on DTA-C, our architecture dif-
fers in two points from the DTA-C approach. First, unlike in
DTA-C, in this paper we do not imply a synchronization and
execution pipeline but a standard x86-64 pipeline per core.
Second, we incorporate x86-64 control flow instructions to
support micro control-flow within a thread. This allows us to
exploit data locality without replicating instructions or hav-
ing to create new threads. For simplicity we call a dataflow
thread with micro control flow support a thread.

3.1 Basic Architecture
We assume a tiled hardware architecture, where a tile is

denoted as a node. As shown in Figure 1 each node is com-
prised of a certain number of cores and node management
modules. In the following we describe these components in
detail.

3.1.1 Core level
On the core level, the basic elements of our architecture

are single cores containing an x86-64 pipeline (x86-64 ISA
with dataflow extensions derived from [22]) along with a
small unified L1-Cache. Each core includes special hardware
extensions consisting of two modules:

• The Local Thread Scheduling Unit (L-TSU) is respon-
sible for scheduling threads on its affiliated core and
communicating with other L-TSUs or the node’s D-
TSU.

• The Local Fault Detection Unit (L-FDU) is responsible
for the detection of faults and reliability management
within a core.

Beside the L-TSU and L-FDU, each core stores the data
of a running thread in the Frame Memory (FM). The Frame
Memory is managed in a way that the data appears at the
top level of the memory hierarchy (possibly all in the L1
cache [10]). This memory is filled with the thread’s data



(denoted as thread frame) before execution. Threads are
not allowed to read from other thread frames. However,
writes into disjoint locations are permitted to support com-
munication between threads in order to provide the inputs
for subsequent threads.

3.1.2 Node level
From the node level perspective we propose two additional

hardware modules for management purposes. First, the Dis-
tributed Thread Scheduling Unit (D-TSU) coordinates the
scheduling of the threads to cores within a node and com-
municates with other D-TSUs. Therefore, the D-TSU holds
a table for bookkeeping the thread-to-core relations. Second,
the Distributed Fault Detection Unit (D-FDU) is responsible
for fault detection, performance monitoring, and reliability
management within a node.

3.1.3 Communication
For the communication between nodes, we assume an in-

terconnection network in style of a 2D-mesh. All commu-
nication from one node to another will be handled by the
interconnection network. Furthermore, we consider mem-
ory controllers to access off-chip DRAM and I/O-controllers
on node level. The controllers are connected to the inter-
connection network as well.

3.2 Execution model
A DTA-C program is partitioned in coarse-grained data-

flow threads, where the execution of a thread consists of
three phases. First, the pre-load phase loads data from the
FM and stores it into the core registers. The second phase
is the thread execution, where the thread executes without
any memory access. The third phase is the post-store phase,
where the results from the thread execution are written to
the consuming thread frames.

Beside the frame, each thread has an assigned control
structure called continuation. This structure stores con-
trol information about the thread, i.e. the pointer to the
thread frame, the program counter, and the synchronization
count (number of empty inputs). A thread will be scheduled
for execution if and only if all inputs have been written to
the thread’s frame and therefore its synchronization count
is zero.

Since in DTA-C prefetching can be very productively cou-
pled with the scheduling of threads, accesses to FM usually
have low latency and are not likely to suffer from page faults
or cache misses. Generally, a core’s pipeline is supposed to
seldom stall in the case of FM accesses.

4. FAULT DETECTION EXTENSIONS
The central components of our fault detection approach

are the already mentioned Fault Detection Units (FDUs).
The Distributed FDU (D-FDU) is a lean hardware unit op-
erating as an observer-controller on node level. As such, a
D-FDU autonomously queries and gathers the health states
of all cores within its node over the unreliable interconnect.
In this context the D-FDU is supported by the L-FDUs (de-
scribed in Section 4.2) located with each node’s core. In ad-
dition, D-FDUs monitor each other in order to detect faults
of other D-FDUs in other nodes. The D-FDU analyzes the
gathered information and provides the thread scheduler on
node level (D-TSU) with information about the state of the
whole node and other D-FDUs.

4.1 Basic fault model
This subsection describes our underlying fault model. We

assume non-systematic transient faults in the form of Single
Event Upsets (SEUs), permanent, intermittent, and tran-
sient faults during operation in cores and interconnects.

SEUs and permanent faults are presumed to occur in one
component at a time, since multiple bit faults at a time are
extremely seldom. At this stage of development, a compo-
nent can be a D-TSU, an L-TSU, a D-FDU, an L-FDU, a
core, or a link.

On intra-node level, we assume

• permanent, intermittent, and transient faults within
cores and L-FDUs and

• permanent and intermittent broken links between co-
res, L-TSUs, and L-FDUs.

On inter-node level our architecture has to cope with per-
manent, intermittent and transient faults of whole nodes or
links between nodes, I/O, and memory.

We further hypothesize that all communication between
cores, FDUs, TSUs, and memories, i.e. off-chip RAM and
the FM within the nodes, is secured by error correcting codes
(ECCs).

In the rest of this paper, we focus on the intra-node level.

4.2 L-FDU
The L-FDU is a small hardware unit implemented on each

core to detect transient faults by extracting information
from the Machine Check Architecture (MCA, see Section
4.4). Basically, the L-FDU has two tasks:

1. Reading out the fault detection registers of the mon-
itored core, i.e. registers of the Machine Check Ar-
chitecture or the Control Flow Checker, described in
Section 4.4 and 4.5, respectively.

2. Periodic communication with the D-FDU by sending
health messages of the core.

4.3 D-FDU
Concerning intra-node fault detection, the D-FDU de-

tects node and link failures and informs the D-TSU about
the faulty components, while the D-TSU is responsible for
thread recovery and restart.

For the internal behavior of the D-FDU, we adopt an
autonomic computing approach [15] organizing the opera-
tion principle into the four consecutive steps: Monitoring,
Analyzing, Planning, and Executing (see Figure 2). This
MAPE cycle operates on a set of managed elements, com-
prising intra-node (cores and D-TSU) and inter-node ele-
ments (other D-FDUs) in other nodes [32].

D-FDUs detect faults and proactively maintain the oper-
ability of the node they monitor, for example by dynamically
performing clock and voltage scaling while monitoring the
cores’ error rates, temperatures, and utilization. In this con-
text proactive means the prediction of a core’s health state
based on monitored information and taking action before
the core gets damaged.

The intra-node monitoring of cores, D-TSU, and D-FDU
is separated in two categories: time and event-driven. Time-
driven messages are heartbeat messages that contain a set
of core health information. Of particular interest are faults
that influence the actual core performance. The D-FDU
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expects a heartbeat message of a core in a certain time in-
terval. If no heartbeat messages arrive at the D-FDU within
the expected interval, the associated core will be suspected
as faulty. When a permanent fault can be assured, e.g. mul-
tiple faults are detected in a short period of time; the D-FDU
considers the core as completely broken. As a consequence
the D-FDU considers the core as faulty and informs the D-
TSU. The D-TSU itself is monitored by the D-FDU with
the same techniques as a regular core. Thus, D-TSU faults
can be detected as well.

The D-FDU communicates with the D-TSU via command
messages, i.e. notify, request, and response messages. The
D-TSU requests the D-FDU to change the frequency of a
core or to reduce the frequency in the case of low workload,
while the D-FDU reports the D-TSU on thermal and error
conditions. In case of an intermittent or permanent error,
the D-TSU temporarily or permanently stops scheduling any
threads to the broken core.

D-FDUs can suffer from faults as well. To distribute re-
liability information between nodes, D-FDUs monitor each
other.

Event-driven messages are alert messages in case of core
faults. These messages are triggered by the L-FDU and
notify the affiliated D-FDU within the node.

4.4 Machine Check Architecture
Most recent microprocessors are equipped with an ar-

chitectural subsystem called Machine Check Architecture
(MCA) [13] that is able to detect and correct certain faults.
For instance for AMD K10 processor family [2], the MCA
can detect faults in the data and instruction cache, the bus
unit, the load-store unit, the northbridge, and the reorder
buffers. In the case of a fault, MCA implementations mostly
distinguish between two different types of faults:

1. Correctable faults that can be repaired on-the-fly. The-
refore, the thread does not suffer from data and exe-
cution state corruption. These faults are handled by
the core.

2. Non-correctable faults (mainly permanent faults and
multiple bit flips) let the thread remain in a corrupted
state.

We assume that all cores include a minimal Machine Check
Architecture, which checks the fetched instructions and data

for ECC checksum errors in registers, Frame Memory, and
caches.

Since frequent occurrences of correctable and non-correct-
able faults may be a direct indicator for intermittent or per-
manent faults, or a permanent breakdown of the whole core,
the L-FDUs transmit this information within its periodic
heartbeat messages to the D-FDU. The D-FDU uses then
the information to make predictions about the current reli-
ability state of the core.

4.5 Control flow checking
Assuming control flow instructions within a dataflow thr-

ead, we incorporate a hybrid mechanism to dynamically de-
tect control flow errors during runtime. Our proposed ap-
proach works as follows:

1. We instrument the application code of the dataflow
threads at compile time by adding checkpoints (soft-
ware instrumentation) to each basic block. A basic
block consists of instructions and no control flow, i.e.
branches, calls, or jumps. Additionally, it contains the
maximum execution time until the next checkpoint is
reached.

2. During runtime, a hardware check unit connected to
the pipeline of a core reads the instrumented data in
order to verify the correctness of the control flow. The
checker unit compares the information from the actual
control flow with the expected values from the instru-
mentation.

Double-executed threads (see Section 4.6) detect faulty
behavior after their execution. The checker technique can
speed up fault detection and permits lower detection laten-
cies for transient and permanent errors affecting the control
flow.

The proposed hybrid control flow checking approach com-
bines benefits of both hard- and software mechanisms. The
hardware overhead of this technique is limited to a small
check unit with low complexity, while the overhead in execu-
tion time is caused by only few additional code instructions
depending on the amount of executed control flow instruc-
tions within a thread.

4.6 Double execution
Our functional dataflow execution model simplifies the du-

plication of threads dynamically during the execution. We
follow the definitions given by Rotenberg [26] and call the
thread that is duplicated leading thread and its copy trail-
ing thread. Please note that we use this terminology only to
distinguish between threads, threads must not executed one
after each.

Since the execution of dataflow threads is side-effect free
and writes are only assigned once, we must only duplicate
the continuation of a thread. This relaxes the complexity
for the memory management as well as the management of
the trailing thread.

Within a Thread-to-Core List (TCL) in each D-TSU, all
continuations scheduled to a core within the node are re-
dundantly stored. Our approach only duplicates the redun-
dantly stored continuation in the D-FDU and schedules it
to another core within the node. This means we can ex-
ploit data locality by sharing the thread frame between the
leading and the trailing thread.
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The L-FDUs reduce the result set per thread to a 32-
bit signature and forward it to the node’s D-FDU, which
compares all signature pairs. The D-FDU signals the D-
TSU the commitment of the leading thread. In the fault
free case, the results of the leading thread are forwarded by
the L-TSU to the D-TSU and stored in all consuming thread
frames. Otherwise, the D-TSU has to trigger the recovery
mechanism, described in Section 5. In more detail, double
execution works as follows:

1. A thread is duplicated when its synchronization count
becomes zero, i.e. a thread has received all its input
values and is ready to execute. The L-TSU proceeds
with the execution of the leading thread as usual.

2. To indicate the thread’s duplication, the L-TSU sends
notification messages to the D-TSU and the D-FDU.
The D-TSU is responsible for copying the redundantly
stored continuation of the thread and distributing it to
the same or another core within the node, depending
on which type of fault to detect. To detect transient
faults, the D-TSU can schedule the thread to the same
core. To detect permanent and intermittent faults as
well, the D-TSU schedules the thread on a core within
the same node, but on a different core by passing the
copied continuation to the L-TSU of the core.

3. When both threads have finished execution, the L-
TSU redirects the writes of the threads to the D-TSU
and the D-FDU. The D-TSU manages a mechanism to
buffer the writes until the D-FDU, which is in charge
of comparing the results, gives a feedback.

4. In the case of a fault free execution the D-TSU deletes
the continuation in its TCL and forwards the writes of
the leading thread to the appropriate consuming thr-
eads. In the case of a fault, it has to re-execute the
thread.

5. FAULT RECOVERY
The beauty of the dataflow execution model is side-effect

free thread execution and single-assignment data passing be-
tween threads. This inherent functional semantic includes
execution checkpoints between the dataflow threads. In
other words, a dataflow thread can be restarted, as long
as no writes to consumer threads have taken place. This is

always the case in DTA-C, since the output frame becomes
visible only after finishing the whole execution of the pro-
ducer thread. Compared to a state-of-the-art many-core sys-
tems, these dataflow checkpoints promise a smaller memory
footprint and simpler semantic for rollback-recovery mecha-
nisms.

Figure 3 shows how the recovery mechanism will work.
Note that we implicitly assume double execution to detect
faults. When the D-FDU determines a fault within a moni-
tored core (between time T2 and T3), it provides the corre-
sponding core ID, together with the fault information to its
affiliated D-TSU. Subsequently, the D-FDU tries to deter-
mine the cause of the detected fault. Depending on the kind
of the fault the D-TSU can either restart the thread (at T4,
after the rollback between time T3 and T4) on the same core
or re-allocate all threads of the faulty core to reliable cores.
In the given case of a transient fault, usually the D-TSU
will try to re-execute a thread again on the original core
(at T4). The re-execution can easily be done by overwrit-
ing the continuation field at the L-TSU with the redundant
continuation field hold by the D-TSU. The L-TSU will then
schedule the thread again.

In our approach restarting threads is assured by the D-
TSU, which only forwards writes to the consuming thread
frames if and only if the D-FDU signals the fault free exe-
cution of the producing thread.

If the D-FDU assumes a permanent or intermittent fault
due to many re-execution attempts or information from the
L-FDU, it must exclude the faulty core from further work-
load. This is done by providing the D-TSU with the in-
formation, which core is faulty. Consequently, the D-TSU
re-schedules all threads of the faulty core on another reli-
able core. In order to do that, the D-TSU traverses its TCL
and searches for corresponding entries regarding the faulty
core. If the D-TSU finds an entry that is associated with the
faulty core, it re-assigns the entry to a reliable core. Sub-
sequently, the L-TSU has to allocate a thread frame for the
newly assigned thread and fill the frame with the data from
the D-TSU.

6. CONCLUSION
This paper presented a concept to cope with transient,

intermittent, and permanent faults on all levels of a parallel
hierarchical threaded dataflow system.



The detection of faults is done by control flow checking,
double execution, and by exploiting the machine check ar-
chitecture of the underlying cores. The hybrid control flow
checking mechanism promises a low detection latency of pro-
gram flow errors and low overhead concerning additional
execution time. Permanent and intermittent faults can be
recognized by scheduling the same threads onto different
cores. Transient faults can be detected by executing the
same threads on the same or different cores. Furthermore,
we proposed a lean recovery mechanism, which exploits the
thread-level checkpoints, intrinsic in our baseline dataflow
architecture.
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