
Early Results from ERA – Embedded
Reconfigurable Architectures

Stephan Wong, Anthony Brandon, Fakhar Anjam, Roël Seedorf
Delft University of Technology

Delft, The Netherlands
{J.S.S.M.Wong, A.A.C.Brandon, F.Anjam, R.A.E.Seedorf}@tudelft.nl

Roberto Giorgi, Zhibin Yu, Nikola Puzović
University of Siena

Siena, Italy
{giorgi, zhibin, puzovic}@dii.unisi.it

Sally A. Mckee, Magnus Själander
Chalmers University of Technology

Göteburg, Sweden
{mckee, magnus.sjalander}@chalmers.se

Luigi Carro
UFRGS

Porto Alegre, Brazil
carro@inf.ufrgs.br

Georgios Keramidas
Industrial Systems Institute

Patras, Greece
keramidas@isi.gr

Abstract—The growing complexity and diversity of embed-
ded systems — combined with continuing demands for higher
performance and lower power consumption — place increasing
pressure on embedded platforms designers. To address these
problems, the Embedded Reconfigurable Architectures project
(ERA), investigates innovations in both hardware and tools
to create next-generation embedded systems. Leveraging adap-
tive hardware enables maximum performance for given power
budgets. We design our platform via a structured approach
that allows integration of reconfigurable computing elements,
network fabrics, and memory hierarchy components. Com-
mercially available, off-the-shelf processors are combined with
other proprietary and application-specific, dedicated cores. These
computing and network elements can adapt their composition,
organization, and even instruction-set architectures in an effort
to provide the best possible trade-offs in performance and power
for the given application(s). Likewise, network elements and
topologies and memory hierarchy organization can be selected
both statically at design time and dynamically at run-time.
Hardware details are exposed to the operating system, run-time
system, compiler, and applications. This combination supports
fast platform prototyping of high-efficient embedded system
designs. Our design philosophy supports the freedom to flexibly
tune all these hardware elements, enabling a better choice of
power/performance trade-offs than that afforded by the current
state of the art.

Index Terms—adaptive embedded platform; benchmarking; ρ-
VEX VLIW processor;

I. INTRODUCTION

Continuing innovation in the embedded systems market
drives the need for increased usability via improving existing
functionalities and inventing new ones. Product design cycles
grow ever tighter, currently average about a year. Time-to-
market commonly necessitates the use of standardized IP
blocks and the re-use of existing designs. These practical
approaches reduce design and verification time and effort, but
they preclude niche-market optimizations that are not foreseen
at design time. Such platforms quickly evolve from innovative
to obsolescent in the face of emerging standards (e.g., for

communication, audio and video processing). These kinds of
platforms deliver the benefits of general-purpose systems at
the cost of inherent inefficiencies with respect to specific
functionalities. Rapidly changing application needs instead
recommend support for adaptability over the lifetime of a
product. FPGAs and eFPGAs provide such adaptation, but
their programming times preclude dynamic, application-based
reconfiguration, and they tend to have limited opportunity
to influence memory and communication. Furthermore, em-
bedded systems rely on limited energy supplies, and thus to
best leverage the underlying technologies, such reconfiguration
and optimization must likely be performed in hardware. The
inherent complexity of this adaptation requires innovative
solutions, both to address multiple markets and to address
multiple applications within a market.

Providing a configurable fabric allows adaptation as nec-
essary, but this innovation requires several problems to be
addressed. First, power consumption of reconfigurable devices
is generally high, given that programming them requires
reading from an external memory. Second, support for re-
configuration necessarily requires additional wiring. Finally,
design flows must remain sufficiently simple to hide optimiza-
tion bottlenecks from the user. The ERA project addresses
these problems by introducing a reconfigurable fabric that can
adapt at design time, application deployment, and even during
execution over the product’s lifetime [1]. The ERA project has
the following objectives:

• to define and develop a dynamically reconfigurable plat-
form that is composed of a parametrized VLIW processor
connected by a NoC with a memory subsystem;

• to provide support for flexible and fast platform recon-
figuration by using hardware support and partial recon-
figuration;

• to provide the required hardware monitoring and low level
OS support for controlling the hardware reconfiguration;

978-1-4244-8396-9/10/$26.00 c© 2010 IEEE

978-1-4577-0433-8/11/$26.00 ©2011 IEEE 816

Fig. 1. High-level view of the ERA system.

• to benchmark a set of existing mobile applications in
order to extract measurable parameters;

• to design a supervisor for monitoring the reconfiguration
of the hardware when the application changes requires
so.

II. PROJECT OVERVIEW

To cope with the power problems that reconfiguration
presents, our research emphasizes accelerator development
within a coarse-grain reconfigurable fabric. The ERA family
of architectures combines the ρ-VEX reconfigurable VLIW
processor, flexible memory organizations, and a configurable
interconnection network that provides better power manage-
ment by distributing routing resources (Figure 1). The software
stack comprises a compiler and an OS that can drive both
static and dynamic reconfiguration decisions according to
application characteristics and user power and performance
objectives.

Choosing to use a single adaptable processor avoids creating
a different accelerator for each new application, which is costly
in terms of a products design time and time-to-market, and
adapting processor organization on-the-fly avoids these pitfalls
while offering flexible power and performance management.
VLIW processors represent an excellent design point with
respect to this management. Their issue width and dimension-
ality can be varied to meet size and power design constraints.
This variable issue width can increase ILP at the cost of
heavier pressure on the memory subsystem, thus we adapt it, as
well. Knowing specific application behaviors and requirements
— along with user specifications — allows us to precisely
tailor the memory hierarchy organization and management to
better match the processor’s data-consumption needs. On-chip
memory can be effectively re-sized, drowsy and decay policies
can reduce power consumptions, shared-memory coherence
communication can be minimized, and data placement and
replacement can be controlled in hardware and software. Such
malleable memory systems leverage information from the ap-
plication and the compiler together with hardware monitoring
and profile-directed feedback. Just as memory needs change
from phase to phase and from application to application,

so do communication requirements. We thus implement a
reconfigurable NoC to manage the changing communication
needs.

III. THE DELFT RECONFIGURABLE VLIW PROCESSOR

We present the Delft ρ-VEX processor [2], an extensible and
reconfigurable softcore that is based on the VLIW Example
(VEX) ISA [3]. Hewlett-Packard (HP) and STMicroelectronics
developed the VEX ISA as a 32-bit clustered VLIW that can
be scaled and customized to individual application domains.
Parameters include number and type of Functional Units
(FUs), supported operations, memory bandwidth, and register
file size. The VEX ISA is loosely modeled on that of the
HP/ST Lx (ST200) family of VLIW embedded cores. The
VEX trace-scheduling C compiler is a parameterized ISO/C89
industrial strength compiler. A programmable machine model
determines the target architecture, which is then provided as
input to the compiler. The VEX software toolchain (including
the VEX C compiler and simulator) is freely available from
Hewlett-Packard Laboratories. The ρ-VEX processor bridges
the gap between application-specific and general-purpose pro-
cessing. Advantages include simplified hardware and the ready
availability of powerful tools.

One of the main advantages of VLIW processors is that
their hardware design is relatively simple compared to that
of dynamic-issue super-scalar processors, since there are no
complex instruction decoders (e.g., for out-of-order execution):
the compiler dictates all instruction scheduling. The hardware
FPGA implementation is thus simplified, which permits higher
clock frequencies. Adding more issue slots or functional units
to the micro-architecture allows execution of the parallelism
that the compiler can extract.

With respect to tools, VLIW compilers are readily available,
and they continue to improve. Moreover, for the VEX ISA
on which we base our designs, a simulator is available to
investigate the performance gains for different architectural
instances of the VEX processor. We can thus exploit existing
compilers (and simulators), including future advancements to
those technologies, without the need to first dedicate excessive
effort to their development.

When the sizes of the reconfigurable hardware structure
and the available hardware area are known a priori, one or
several pre-configured VLIW softcore(s) can be instantiated
on the FPGA. Trade-off studies with a simulator or model can
quickly determine the best suited parameters of the available
hardware for execution of the target applications. This scenario
is most suited for the embedded design environment as the
requirements and the platform are usually well-known and
fixed.

Sharing of resources between multiple VLIW processors
can also be dictated statically, but when neither the application
nor the precise characteristics of the attached reconfigurable
hardware is known at design time, resources may be shared
dynamically. Enough resources must be instantiated to allow
for sharing among the multiple VLIW processors which run
on the same chip. In the same vein, new resources can be

817

instantiated on-the-fly, and when they are no longer needed,
space can be freed to dedicate to other applications.

Properties of VLIW architectures that previously prevented
mainstream adoption are easier to overcome in reconfigurable
hardware. For instance, varying instruction word widths allows
different phases or applications to exploit different levels of
parallelism. But using wider or narrower instruction words
requires different encoding schemes. Fortunately, the reconfig-
urable and parameterizable nature of VLIW makes it possible
to instantiate different instruction decoders, either with or
without reconfiguring the issue slots. Furthermore, unused
issue slots can be shared among other softcores.

Traditionally, the fixed nature of VLIW implementations
means that their organizations may not match inherent appli-
cation parallelism, resulting in many scheduled NOPS. This
leads to low utilization of resources (sometimes under 50%).
Instead of inserting NOPs, the ρ-VEX can reconfigure the
issue slots either by switching them off or by allowing other
cores that need more performance to use the unused slots.

We can compile whole applications or threads for our ρ-
VEX cores, or we can accelerate specific kernels. Code need
not be rewritten, complex tools like C-to-VHDL translators
need not be employed, and accelerator design need not be
manual. Obviously, manual (re)design of both code and accel-
erators can be useful, as can complex tools, but ERA provides
the option of a less complex, more automated solution that
can often meet power, area, and performance requirements.

IV. MICROARCHITECTURE

The ρ-VEX processor allows design-time configuration of
number and types of Functional Units (FUs), number of multi-
ported registers, number and type of accessible FUs per sub-
instruction (syllable – a VEX instruction consists of multiple
syllables), issue-width, number of ALUs, number of multiply
(MUL) units, number of General-Purpose Registers (GRs),
number of Branch Registers (BRs), width of memory buses,
and the architectural latencies of FUs. Figure 2 depicts the
organization of a 32-bit, four-issue ρ-VEX VLIW processor.
The processor’s pipelined is divided into Fetch, Decode,
Execute 0, Execute 1, and WriteBack stages. The Fetch stage
reads VLIW instructions from instruction memory, splits them
into syllables, and passes them to the Decode stage, which
decodes the syllables and fetches register operands with the
decoded register identifiers. In essence, this stage decodes each
syllable to an operation, access registers and performs control
transfers (in the Branch Unit). The accessed registers are
send as operands to the Execute 0 stage. This stage performs
arithmetic and logic operations (in the ALU and MUL units)
on its operands. The Execute 1 stage performs a pre-selection
of functional results for the commit stage and does the store or
load phase of data memory operations in the load/store unit.
The WriteBack stage performs all write activities and avoids
read-after-write data hazards that are created by the decode
stage. The register file write targets can be in the General-
Purpose Register file (GR) and/or in the Branch Register file
(BR). The data memory of the processor is implemented by

Instruction

Memory
Data

Memory

PC

DecodeFetch WritebackExecute

GR CTRL

BR MEM

ALU

ALU MUL

MUL

Fig. 2. A 4-issue ρ-VEX VLIW Processor instance.

utilizing the Block RAM (BRAMs) that are provided by the
FPGA.

V. TOOLCHAIN

The ρ-VEX toolchain consists of the HP VEX compiler, a
port of the gnu binutils package with an assembler and a linker,
and a tool that converts object files into synthesizable VHDL
code for the instruction ROM and data memory. A machine
description configures the HP compiler to generate assembly
for different ρ-VEX instantiations. For the examples here, the
machine description describes either a two-issue or four-issue
core without forwarding. The assembler generates elf object
files that are linked to form the executable, and a custom tool
extracts the text and data segments to convert them to VHDL.

VI. ERA SOFTWARE STACK

The software stack comprises not only the compiler and
application APIs that are needed to guide reconfiguration,
but it contains the OS and run-time support that manage the
transformation process. We modify the OS to receive the task
distribution in advance; it then manages the reconfiguration,
decides when to reconfigure, and schedules work in concert
with making reconfiguration decisions. The programmer can
completely control reconfiguration via the provided API, or the
platform’s adaptivity can be left to the OS and the underlying
hardware. Hardware provides key monitoring information on
application behavior (e.g., functional unit utilization, memory
intensity, or temperature), and the OS then decides the best
application or the task placement to save power and/or deliver
more performance.

The use of variable-issue-width VLIW processors prevents
us from using existing VLIW compilers. Our compiler must be
aware of the run-time reconfiguration of the architecture, gen-
erating multiple code versions (for different widths) and fast
schedules for each. We are developing advanced optimizations
to induce the most suitable architectural reconfiguration that
match the application requirements.

VII. BENCHMARK CHARACTERIZATION

In order to understand the platform’s potential to exploit
reconfigurability, we first profile our target application suite,
and characterize its behavior on whole programs, and program

818

intervals. This will guide micro-architecture configuration
between applications/tasks. Analyzing a program’s intervals
guides more fine-grained reconfiguration which will be uti-
lized for adapting the platform to different phase behaviors.
Phase detection algorithms estimate the differences in the
observed behavior between distinct intervals of execution [4].
To reflect the most common usage scenarios in systems like
smartphones, ERA applications comprise image and video
processing applications, security programs, and object and
image recognition software (e.g., for augmented reality) [5].

Previous work has revealed several pitfalls of using
microarchitecture-dependent measurements [6]. For instance,
using hardware performance counters may be misleading,
and even if they show similarity between two programs,
the underlying program behaviors may be quite different.
Additionally, small changes in the microarchitecture may
trigger big differences in the program behavior. Since we are
designing reconfigurable systems, we rely on a number of
microarchitecture-independent metrics.

The behavior of programs with respect to memory system
is characterized using the working set size, access strides
(to determine spatial locality), and reuse distances [7] (to
understand cache miss rates). The impact of the processor
architecture on execution is determined by analyzing the
degree of register use, register dependency distance [8] (to
determine whether techniques like data forwarding would
be effective) and instruction mix (to estimate the need for
different functional units).

VIII. INITIAL RESULTS

We developed the ρ-VEX processor to be technology in-
dependent. For instance, we implemented and tested versions
using the different FPGA chips from Altera and Xilinx. Here
we report measurements on the Xilinx Virtex-6 XC6VLX240T-
1FF1152 FPGA, which is available on the ML605 develop-
ment board. We present the implementation results for a 2-
issue and a 4-issue ρ-VEX processor instance. The processors
are pipelined without forwarding logic. The two-issue core
includes two ALUs and two MULs, while the four-issue core
has four ALUs and two MULs. Both processor instances have
one branch unit and a single load/store unit. For comparison,
we choose the single-issue Microblaze processor that is the
standard softcore on Xilinx FPGAs and we implemented both
a speed-optimized and an area-optimized version in the same
FPGA. We compare the performance of ρ-VEX processor
with that of the Microblaze processor because it will function
as the host processor within the multi-core ERA platform.
Table I shows results for the Xilinx ISE 12.4 and the Virtex-6
XC6VLX240T-1FF1152 FPGA.

The register file for the single-issue Microblaze core has
two read ports and a single write port and it requires very
few resources for its implementation. The ρ-VEX processor
register files have to be more multi-ported. The two-issue ρ-
VEX core’s RF has four read ports and two write ports, and
the four-issue ρ-VEX core’s RF has eight read ports and four
write ports. These multi-ported register file implementations

consume considerable resources: more than 50% of the ρ-VEX
hardware is consumed by the register file alone. At 64 times
32 bits, the ρ-VEX’s RF is twice the size of the Microblaze’s.

In contrast to the ρ-VEX designs, the single-issue Microb-
laze only needs one ALU and one MUL. Furthermore, it
is a proprietary processor optimized to specifically deliver
performance on the Xilinx FPGAs, and hence it is not possible
to implement its design on a different fabric. On the other
hand, the ρ-VEX is designed to be portable across different
FPGAs. This means that we can further reduce its required
hardware resources by optimizing the ρ-VEX for a specific
FPGA family.

We select two kernels from the applications in the previ-
ous section. Most applications require either floating point
support or system calls, neither of which are yet supported
in our current ρ-VEX instantiations. The two kernels are
the x264 pixel sad 16x16 function from H.264, and the
jpeg fdct islow from cjpeg. H.264 calculates the sum of abso-
lute differences over several arrays. The cjpeg kernel performs
a Forward Discrete Cosine Transform (FDCT) calculation. We
added four other benchmarks to our experimental suite: matrix
multiplication multiplies two 10×10 matrices, the ADPCM
uses a Pulse Code Modulation (PCM) application to encode
and decode data, Soma benchmark recursively computes the
squares of the first 10 integers, and the DFT benchmark
performs a Discrete Fourier Transform.

We run these six benchmarks on four different platforms: the
Microblaze optimized for speed, the Microblaze optimized for
area, a four-issue ρ-VEX, and a two-issue ρ-VEX. The speed
optimized Microblaze deploys a 5-stage pipeline, achieves
higher clock frequency, but requires more FPGA resources.
On the other hand, an area-optimized Microblaze has a 3-stage
pipeline. The Microblaze provides a baseline against which to
measure the performance of instances of the ρ-VEX processor.
All four processors operate at 100MHz. The benchmarks are
compiled for the Microblaze with the -O3 optimization flag
(including inlining). ρ-VEX applications are compiled with -
O3 and -autoinline.

Figure 3 depicts results for ρ-VEX compared to the speed-
optimized Microblaze, and Figure 4 depicts results compared
to the area-optimized Microblaze. The figures show that for the
soma and cjpeg applications the ρ-VEX is significantly faster
for both the two-issue and four-issue implementations. These
benchmarks exhibit large amounts of ILP in comparison to

TABLE I
IMPLEMENTATION RESULTS.

Core Slice Slice DSP48E1s LUTRAMs
Registers LUTs

two-issue ρ-VEX 2734 7372 8 0

four-issue ρ-VEX 3096 16955 8 0

Microblaze 1041 1231 3 149
(speed optimized)

Microblaze 722 977 3 148
(area optimized)

819

0

1

2

ADPCM Matrix Soma DFT x264 CJPEG

S
p
ee
d
u
p

Benchmark

MicroBlaze

4 issue
2 issue

Fig. 3. Performance comparison with speed-optimized Microblaze.

0

1

2

3

ADPCM Matrix Soma DFT x264 CJPEG

S
p
ee
d
u
p

Benchmark

MicroBlaze

4 issue
2 issue

Fig. 4. Performance comparison with area-optimized Microblaze.

the others. For DFT, x264, and ADPCM our results resemble
those of the Microblaze. These benchmarks have less ILP,
which together with the lack of forwarding negates potential
speedups. Finally, the Microblaze performs significantly better
on the matrix benchmark than the two-issue and four-issue
ρ-VEX cores. Here, the speed-optimized version of the Mi-
croblaze has a MUL that performs a 32×32 bit multiplication
with a single-cycle latency. The ρ-VEX, on the other hand,
requires three cycles, since it needs to compute two 16×32-
bit multiplications and a sum of the products.

Comparing results from the four-issue and two-issue ρ-VEX
cores shows a consistently small performance drop from four-
issue to two-issue, except in the case of the cjpeg benchmark,
which exhibits a larger decrease. Lack of forwarding logic
in both designs means that the four-issue ρ-VEX contains
more NOPs between dependent operations. While the two-
issue ρ-VEX processor contains fewer NOPs, since operations
are now split over multiple VLIW instructions. The upshot is
that both organizations experience approximately similar cycle
counts. Finally, Figure 4 compares the two ρ-VEXes to the
area-optimized Microblaze. Here, the ρ-VEX performs very
closely to the Microblaze in the two worst cases, but delivers
a factor of three better performance in the best case.

A closer inspection of Figure 3 and Table I could lead to
the conclusion to use two MicroBlaze cores instead of one in
order to achieve a speedup factor similar to VEX, and still use
less FPGA resources. However, such an implementation has

to take care of the communication overhead that comes into
play. Furthermore, one has to partition and map the applica-
tion/kernel to both Microblaze cores. This means that porting
an application in general becomes harder, or that of usage
of a different programming model. the VEX compiler and
the ρ-VEX micro-architecture, does not have these problems.
Likewise, we do not compare the ρ-VEX processor with a
MicroBlaze based MPSoC, as such a platform in principle
presents a limit to the amount of spatial parallelism that
its processing cores can execute. This is true, as the cores
RISC pipeline contains a single processing lane. Hence, it can
perform a limited amount of ILP execution.

At the micro-architectural level, there are three techniques
to improve the performance and reduce the required FPGA
resources of the ρ-VEX processor:

1) Bypass logic
2) Register Files
3) Functional Units

The goal of the first is to minimize the visible architectural
latencies of in flight operations with read-after-write hazards.
However, the design of this component must be done with
care, as it can decrease the cores clock frequency. Bypass logic
requires selection hardware that is located on the critical path
of the pipeline. Furthermore, we can utilize register files that
are optimized such as to benefit from splitting the decode stage
into a decode and register access stage. This will decrease
the clock-cycle time even further. The last technique increases
the clock-frequency, as it utilizes faster and smaller functional
units. We will optimize the design of the MUL and ALU FUs,
in order to decrease the critical path of the processors pipeline
and its required resources.

A. Application Characterization

To investigate whether switching between different config-
urations of the ρ-VEX processor at run-time benefits per-
formance or power consumption, we characterize the phase
behavior of our benchmark set. This characterization will show
whether the phases are long enough to warrant a switch from
one configuration to another. For this purpose, we utilize the
xSTsim simulator that is configured to simulate the ST231
VLIW core. This processor has a similar micro-architecture as
the ρ-VEX cores. The use of the simulator enables us to extract
more statistics than we can for the native ρ-VEX processor.

The metric that is observed is the number of cycles needed
to commit a VLIW bundle, and its change is measured
over time (Figures 5 and 6). We can see that there is a
difference in phase behavior between two applications (four
phases in AC3 and nine phases in CJPEG). Furthermore, when
the observation interval changes (not shown) the number of
different phases changes. This can drive the reconfiguration to
assign more resources when CPB is low, or to reduce them
when CPB is high and performance is not the topmost priority.

B. Power

To determine the power efficiency of our platform, we start
with its cores and utilize two simple analytical models that

820

0 50 100 150 200 250
12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

Time(tens of thousands of cycles)

C
P

B

Fig. 5. Cycles Per Bundle (CPB) for AC3 application.

0 100 200 300 400 500 600 700 800
12

13

14

15

16

17

18

19

20

21

Time(tens of thousands of cycles)

C
P

B

Fig. 6. Cycles Per Bundle (CPB) for CJPEG application.

can accurately predict the performance and energy impact of
Dynamic Voltage Frequency Scaling (DVFS) across a wide
range of voltage and frequency points. Both models require
minimal input. The first is a stall-based model that is fed
by an approximation of the stall cycles that are experienced
by the processor due to the performance-critical off-chip load
accesses. The second, is a miss-based model that improves on
this approximation using as input the occupancy of the L2’s
miss-handling registers (MSHRs). Our experimental results
using the SPEC2K suite show 2.1% (stall-based model) and
0.2% (miss-based model). The highly accurate predictions
provided by our models can be used in various run-time power
optimizations concerning the reconfiguration of the memory
hierarchy.

We do not yet have the infrastructure in place to use these
models on our ρ-VEX architecture, so we validate these in
real machines by performing accurate power and performance
measurements on state-of-the-art Intel’s i7 processors. Intel
Core i7 is a quad-core CMP. Each core supports hyperthread-
ing execution. The Intel Core i7 family is enhanced with
a special power-aware feature, called Speedstep technology,
which allows run-time voltage and frequency scaling between
9 different steps, from 1.6 to 2.66GHz (i7 920). Furthermore,
this core supports various idle states, called Cstates, in which

Fig. 7. Error in predicting execution time using the stall based model.

it is possible to completely deactivate the clock and cut-
off the power supply for a combination of cores to reduce
static and dynamic power consumption. Unfortunately, the
Intel Core i7 has no performance counter to account for stalls
due to LLC non-overlapping misses. In other words, there
is no specific performance counter to measure the Memory-
Level Parallelism, and we could not use our highly accurate,
miss-based model. Therefore, we use an approximation of the
stall-based model in order to predict the performance under
different frequency points.

The Intel Core i7 comprises of two main voltage islands:
core (execution- and fetch units, OoO and paging logic, L1/L2
caches and branch prediction) and the uncore (L3 caches,
memory controller and QPI). In order to isolate the core
and the uncore power, we compute core power dissipation
by directly measuring voltage and current from the off-chip
voltage regulator (ADP4000) residing in the motherboard by
identifying two pins of interest: the pin that supplies the
voltage to the core and the pin monitoring the total output
current of the regulator. By hacking the motherboard (con-
necting wires to these pins) we were able to measure power
using an oscilloscope while the processor was under normal
operation. We use a sampling period of 10ms (our target is
to provide OS-level optimizations so finer granularities will
not provide useful results). The power measurements can be
easily fed to the kernel OS using DLP-IO8, a USB analog–
to–digital converter. Our future work includes to utilize this
information (in the kernel level) to drive application/OS-driven
DVFS policies.

Figure 7 shows the absolute error of predicting the execution
time using our stall-based model in the Intel Core i7 for a large
frequency step: running the program in the nominal frequency
and predicting the execution time in the minimum frequency
(black bars) – the orange bars represent the reverse scenario.
For space reasons, for the benchmarks with multiple inputs, we
present in Figure 7 the average error over all inputs. To further

TABLE II
THE INTEL I7 CORE HARDWARE EVENTS SELECTED FOR THIS WORK.

Performance Counter Description

UOPS EXECUTED.CORE STALL CYCLES cycles no insts are executed in the processor

L2 RQSTS.LD MISS load requests that missed L2 cache

LLC MISSES last level cache misses

BRANCH MISSES.RETIRED mispredicted branches

UOPS EXECUTED.PORT015 micro-ops executed in ports 0, 1 or 5

UOPS EXECUTED.PORT234 micro-ops executed in ports 2, 3 or 4

UNHALTED CORE CYCLES cycles core not halted

821

analyze the results, we classify the benchmarks into three
categories: CPU-bound, memory-bound, and intermediate or
mixed category. This categorization is performed as follows:
when the frequency is scaled from 2.66 to 1.6 GHz, a purely
CPU-bound program will suffer an increase in its execution
time of 66.67%, but due to memory accesses this penalty
will be smaller. Based on this, a program with performance
penalty of more than 55% (scaling the frequency from max to
min) is CPU-bound, a program with penalty less than 35% is
memory bound while the rest of the benchmarks fall into the
intermediate category. In general, the more memory bound a
program is, the more the increase in the prediction error. This
is an inherent property of the stall based model, since this
model ignores the ROB-fill effect.

IX. CONCLUSIONS

In this paper, we presented the ERA project that addresses
two intertwined problems in the design of embedded systems:
higher performance and lower power consumption. We address
these problems by investigating hardware and software design
aspects of dynamic reconfiguration. The project addresses
many issues at the same time and has been running just over
a year.

We presented some of the early results that were achieved.
First, we identified several benchmarks that should benefit
from dynamic reconfiguration in the ERA platform, and we
presented the initial results for a couple of them. The results
show that applications have the potential for the utilization of
reconfigurable features of the platform.

Second, we designed the initial (non-optimized) version
of the ρ-VEX processor that constitutes the core processing
component of the ERA platform, measured its performance,
and compared the results to the performance of the Microb-
laze processor (both the speed-optimized and area-optimized
versions). The results show that the performance is on par
(from slightly slower to 3 times faster), but we utilize much
more area resources. This is expected and due to the fact that
the Microblaze is much more optimized in resource utilization.
Currently, we are working on area- and performance optimiza-
tions of the ρ-VEX processor in order to decrease its required
FPGA resources.

ACKNOWLEDGMENT

This work is supported by the European Commission in the
context of the ERA (Embedded Reconfigurable Architectures)
collaborative project #249059 (FP7).

REFERENCES

[1] (2010) ERA – Embedded Reconfigurable Architectures. [Online].
Available: http://www.era-project.eu/

[2] S. Wong, T. van As, and G. Brown, “ρ-VEX: A Reconfigurable and
Extensible Softcore VLIW Processor,” in Proceedings IEEE International
Conference on Field-Programmable Technologies (ICFPT08), Dec 2008,
pp. 369 – 372.

[3] J. Fisher, P. Faraboschi, and C. Young, Embedded computing: A VLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann Pub,
2004.

[4] J. Lau, S. Schoemackers, and B. Calder, “Structures for Phase Classifica-
tion,” in ISPASS ’04: Proceedings of the 2004 IEEE International Sym-
posium on Performance Analysis of Systems and Software, Washington,
DC, USA, 2004, pp. 57–67.

[5] N. Puzovic, S. A. McKee, R. Eres, A. Zaks, P. Gai, S. Wong, and
R. Giorgi, “A Multi-Pronged Approach to Benchmark Characterization,”
in Proceedings of IEEE International Conference on Cluster Computing
Workshops and Posters (CLUSTER WORKSHOPS). IEEE, Sep 2010,
pp. 1–4.

[6] K. Hoste and L. Eeckhout, “Microarchitecture-Independent Workload
Characterization,” IEEE Micro, vol. 27, no. 3, pp. 63–72, 2007.

[7] K. Beyls and E. D’Hollander, “Reuse Distance as a Metric for Cache
Behavior,” in Proceedings of the IASTED Conference on Parallel and
Distributed Computing and Systems, vol. 14, 2001, pp. 350–360.

[8] M. Franklin and G. S. Sohi, “Register Traffic Analysis for Streamlining
Inter-operation Communication in Fine-grain Parallel Processors,” in
MICRO 25: Proceedings of the 25th Annual International Symposium on
Microarchitecture. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1992, pp. 236–245.

822

