The growing complexity and diversity of embedded systems — combined with continuing demands for higher performance and lower power consumption — place increasing pressure on embedded platforms designers. To address these problems, the Embedded Reconfigurable Architectures project (ERA), investigates innovations in both hardware and tools to create next-generation embedded systems. Leveraging adaptive hardware enables maximum performance for given power budgets. We design our platform via a structured approach that allows integration of reconfigurable computing elements, network fabrics, and memory hierarchy components. Commercially available, off-the-shelf processors are combined with other proprietary and application-specific, dedicated cores. These computing and network elements can adapt their composition, organization, and even instruction-set architectures in an effort to provide the best possible trade-offs in performance and power for the given application(s). Likewise, network elements and topologies and memory hierarchy organization can be selected both statically at design time and dynamically at run-time. Hardware details are exposed to the operating system, run-time system, compiler, and applications. This combination supports fast platform prototyping of high-efficient embedded system designs. Our design philosophy supports the freedom to flexibly tune all these hardware elements, enabling a better choice of power/performance trade-offs than that afforded by the current state of the art.