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Abstract In a scenario where the complexity and diversity of embedded systems is 
rising and causing extra pressure in the demand for performance at the lowest 
 possible power budget, designers face the challenge brought by the power and 
memory walls in the production of embedded platforms. The focus of the ERA 
project is to investigate and propose new methodologies in both tools and hardware 
design to break through these walls, and help design the next-generation embedded 
systems platforms. The proposed strategy is to utilize adaptive hardware to provide 
the highest possible performance with limited power budgets. The envisioned adap-
tive platform employs a structured design approach that allows integration of  varying 
computing elements, networking elements, and memory elements. For computing 
elements, ERA utilizes a mixture of commercially available off-the-shelf processor 
cores, industry-owned IP cores, and application-specific/dedicated cores. These are 
dynamically adapted regarding their composition, organization, and even instruc-
tion-set architectures, to provide the best possible performance/power trade-offs. 
Similarly, the choice of the most-suited network elements and topology and the 
adaptation of the hierarchy and organization of the memory elements can be deter-
mined at design-time or at run-time. Furthermore, the envisioned adaptive platform 
must be supported by and/or made visible to the application(s), run-time system, 
operating system, and compiler, exploiting the synergism between software and 
hardware. Having the complete freedom to flexibly tune the hardware elements 
allows for a much higher level of efficiency, riding the trade-off curve between 
 performance and power compared to the state of the art. An additional goal of the 
adaptive platform is to serve as a quick prototyping platform in embedded systems 
design.
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10.2  Introduction

The embedded systems market has become a strong focus in Europe that distin-
guishes itself from the more high-performance systems market in the USA, and the 
consumer electronics and the semiconductor market in Asia. Strong application areas 
in Europe are spread among different application markets like in automotive, aero-
space, industrial automation, medical/healthcare, and telecommunication. A key 
(hidden) element in embedded systems is the embedded processor that determines 
most of their functionality. Traditionally, embedded applications with very specific 
requirements (power, size, cost, speed, or any combination thereof) were imple-
mented in dedicated application-specific integrated circuits, leading to long design 
times and re-designs for new applications. In recent years, the key driver in the design 
of the embedded processor has been integration in order to keep (design) costs low, 
reduce time-to-market, and improve functionality of embedded systems. A striking 
example is the mobile phone, in which the number of separate chips was significantly 
reduced because of the utilization of a full embedded platform. The integration is still 
continuing on a single chip towards a more structured (on-chip) design by combining 
multiple IPs, and utilizing more complex and diverse programmable processor cores. 
Additionally, mobility is translated into limited power budgets that must satisfy all 
the required functionality. Several examples show that specialized hardware per-
forms better and consumes less power than general-purpose processors. The trend 
towards specialization is also apparent in large –albeit specific– markets, such as the 
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DSP and Graphics Processing Unit (GPU) markets, where specialized architectures 
are fast gaining ground because their organization is very efficient for a certain class 
of problems. This has been the key issue of embedded systems platforms until very 
recently. Once again, embedded systems are nowadays moving from very special-
ized devices, targeting a single function, to more general-purpose platforms that must 
deliver high performance and low energy for a broad range of applications, which 
should cover all the important application domains where embedded platforms are 
used. Hence, the embedded processor and its platform are key to the EU develop-
ment in these diverse and competitive fields.

To sustain the high-performance and low-energy behavior expected by consum-
ers, the important dilemma which arises is whether to have dedicated specialized 
sub-systems in a fixed multi-core organization, or strive to do better. Creating a dif-
ferent accelerator for each new application that reaches the market is costly in terms 
of design time, and introduces a delay before its adoption by the whole community 
(compromising time-to-market). In contrast, adapting the processor architecture on-
the-fly while an application is running would yield significant performance and 
power benefits, while avoiding the cost and time-to-market pitfalls. This is an old 
dream that as of yet has not come to fruition, but now three conditions exist that can 
bridge the gap between intention and reality. The first is the maturity of reconfigu-
rable computing, since there are several different options to chose from (coarse- and 
fine-grain, homogeneous or heterogeneous, etc.); the second is dynamic adaptation, 
since this allows for fine-tuning at run-time, without user intervention; the third one 
is advanced compiler and operating systems technology, which have greatly evolved 
in the past years to cope with heterogeneous platforms and the need for on-line 
modifications and resource management.

In the embedded systems market, continued innovation is driving the need to 
improve existing functionalities and to introduce new functionalities. This is 
needed to differentiate products and to entice consumers/customers to purchase 
new or improved products. Whilst in the past product cycles span several years, 
the competition nowadays is cut-throat and product design cycles on average are 
more in the range of 1 year. This led to a more structured, platform-based design 
approach of embedded systems, and in turn of the embedded processors. Use of 
standardized IP blocks and re-use of existing designs has become common practice. 
Unfortunately, although a platform greatly reduces design effort and time, it 
precludes ultimate optimizations which are not foreseen at design time for niche 
markets. This way, a platform can very easily become obsolete, since new stan-
dards covering communication, audio and video processing are constantly emerg-
ing. Hence, a platform inherits all the benefits and all the inefficiency that a 
general-purpose processor could have when targeting specific functionalities. 
This scenario of changing applications in short times calls for some sort of adap-
tation during the lifetime of a product. Although FPGAS and eFPGAs can provide 
some adaptation for what concerns changing applications, their programming 
times preclude their adaptation during a program phase, without touching impor-
tant points like memory and communication. As embedded systems must rely on 
limited energy supplies, most likely these optimizations must also be performed 
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at the hardware level, in order to extract the most out of the underlying technology. 
Due to the complexity of such a task, innovative solutions must be sought to 
ensure adaptability targeting optimization for different markets and for different 
applications within the same market. The ERA project covers exactly this prob-
lem by introducing a reconfigurable fabric able to perform adaptation at different 
moments (design time, application deployment, even during the lifetime of a 
product) to adapt to new standards without losing its power efficiency advantages, 
as shown in Fig. 10.1. Finally, reconfiguration will be critical for products devel-
oped for high-reliability markets (automotive, health) or for products developed 
in state-of-the-art processes, that are likely to have many defects, since we are 
reaching the limits of nature itself. In this case, without having total control of the 
fabrication process, one must devise clever fault-tolerant mechanisms at design 
time that can cope with potential low yield and aging, in order to add or maintain 
value to the product.

Adaptability is the key to develop embedded platforms for the new, heteroge-
neous and multi-applications embedded market. One of the ways to adapt is to have 
a reconfigurable fabric available, so that hardware changes can be done whenever 
necessary. Although designs made with reconfigurable hardware are gaining 
popularity in the embedded systems market, there are several issues that must be 
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addressed in order to allow for the breakthrough. Some of these issues stem from 
the excessive power dissipation of reconfigurable devices, since their  programmability 
takes lots of power to read form an external memory, and also their operation draws 
extra power due to the extra reconfigurable wiring that must be present to allow for 
reconfiguration itself. Moreover, one still needs a design flow that, from the final 
user (the embedded system designer) perspective, is simple and hides all optimiza-
tion bottlenecks from view.

To cope with the reconfiguration power problem, in ERA the focus is on the 
development of accelerators using a coarse-grain reconfigurable fabric, composed 
of a reconfigurable VLIW processor, a flexible memory organization and an inter-
connection network that can provide better usage of power resources by distributing 
its routing resources online. A software stack consisting of a compiler and OS will 
provide the means to drive both static and dynamic reconfiguration decisions accord-
ing to the application characteristics and the user objectives (in terms of power and 
performance).

The reason that a VLIW processor was chosen for this project is because of its 
excellent power/performance trade-off. However, as embedded systems target new 
applications, the optimal size of the VLIW is clearly an issue. Developing tradi-
tional static tools such as those available today, based on a set of benchmarks, would 
only produce a general-purpose machine, without the power and performance ben-
efits one would expected to have in dedicated markets with stringent requirements. 
Therefore, in the ERA project we target the usage of multiple and variable issue 
VLIW, as well as a multidimensional VLIW, so that for each different application, 
and for different parts of each application, an optimized processor can be con-
structed on-the-fly to obtain the fastest computation (for the application) with the 
smallest possible power budget within the constraints of the design.

As a variable issue processor is used, extra stress is placed in the memory sub-
system. This requires the adaptation of the memory as well, in order to cope with 
variable instructions and variable amount of parallelism available at any given time 
during program execution. The memory hierarchy plays a significant role in the end 
performance of a system and its power consumption. Our goal in the ERA project is 
to tailor the memory system for executing a target application to meet specific (user) 
objectives for performance and power. The innovation in our case is that this is 
going to happen in concert with the processor reconfiguration (as well as NoC 
reconfiguration) so as to be synergistic towards meeting the user objectives. 
Moreover, all modifications are to be developed during online operation. Memory 
reconfiguration entails a vast array of techniques: resizing on-chip memory to fit 
program needs, optimizing cache architectures for dynamic and static power con-
sumption, optimizing shared-memory communication via custom cache coherence 
protocols, modifying the replacement policies for minimizing miss rates in caches, 
compressing data and removing data redundancies, managing caches shared by 
multiple applications, partitioning the on-chip memory for different functionalities 
(caches, scratchpads, loop buffers, etc.) and any combination of the above. While 
the reconfiguration space is vast in this project, we will combine the mechanisms 
that work synergistically and provide global, application-driven policies for  applying 
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these mechanisms. Our goal is to provide a malleable memory system that can be 
efficiently adapted to the needs of an application using both static (application 
information) and run-time information (hardware monitoring & feedback).

In the same manner, as the processor-cache and processor-memory bandwidth 
and throughput varies, so the communication needs also vary. Devising a single 
strategy for the communication network would mean either extra power without 
equivalent performance gains, or degradation in the quality of services. Therefore, 
in this project a reconfigurable NoC is also proposed as a manager of the communi-
cation needs.

At the software level, in the ERA project the consortium proposes a tool chain 
that comprises not only the application APIs needed to guide reconfiguration, but 
also run-time managing of the reconfiguration process via the OS. Hence, from the 
final user perspective, the embedded system designer himself, the adaptivity of the 
platform will be seen as a seamless software development process. One can envis-
age that the user could control the reconfiguration, since having a multitude of pos-
sibilities for tuning the system performance leads to a set of possible implementations 
of the same hardware accelerator, each with different performance characteristics in 
terms of execution time and hardware resources used. In this project, we envision 
the possibility of performing a coordinated system-wide dynamic reconfiguration 
that will be able to provide the needed hardware resources to the application in a 
“just-in-time” fashion, hence, providing adaptation for a wide range of application 
requirements. The online adaptation is seen as a user-controllable trade-off between 
the execution time of the software and the hardware resources – and consequently 
power consumption– required by the various subsystems.

Another important issue raised by the adaptation process concerns the produc-
tion of optimized code. In current fixed VLIW architectures, the amount of ILP that 
can be exploited is fixed at design time of the architecture, and at compilation time 
of the application However, since the ERA project is based on a variable-issue 
VLIW, the compiler must be aware that run-time reconfiguration of the VLIW 
schedule can also be performed. The biggest challenge is performing this schedule 
change with minimal cost, which will involve a combination of multiple code ver-
sions and fast schedule, and code generation algorithms. In this project, we propose 
a compilation tool-chain that can act as a mediator between the features and require-
ments exposed by the applications (e.g., memory locality, memory bandwidth 
requirements, and processing needs, as well as execution phases, multi-threaded 
behavior, communication, and synchronization) and the reconfiguration potential of 
the architecture. In particular, different modules of the architecture will have the 
ability to reconfigure themselves according to the (in-hardware) perceived runtime 
conditions and resource usage. Our approach complements this hardware monitor-
ing and adaptation by leveraging software development and tuning tools that are 
able to implement a range of optimization strategies of different complexities, aim-
ing to induce the most suitable architectural reconfigurations that match the applica-
tion requirements during run-time. Using this approach, the optimization tools can 
take advantage of the global view of the architecture together with the application 
structure and needs, in order to trigger profitable reconfiguration actions.
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Most complex embedded systems use an operating system, which is responsible 
to load an application to the execution memory, decide how much CPU time each 
application will have and manage interrupt requests. In this project, we propose to 
modify the OS so that, knowing the task distribution in advance, manages the recon-
figuration, decides when to reconfigure, and schedules the work in concert with 
reconfiguration decisions. This would not be possible without the usage of hardware 
monitors that can communicate information to the operating system level so that 
global reconfiguration decisions can be made.

Preliminary work shows that measuring only four statistics per core (instructions 
retired, main memory accesses, floating point utilization, and instruction stalls [1]) 
via appropriate performance monitoring counters (PMCs) and knowing how these 
statistics correlate with power consumption is sufficient to predict per-core power 
(e.g., when only whole-chip power can be measured). Such information has been 
leveraged for local task scheduling decisions to maintain user-specified power bud-
gets. In this project, the adaptation based on analytic models using PMC data from 
real applications will be used in many forms: (i) it will be used in a profiling step to 
feed per-phase information back to an optimization system (which may simply 
choose alternate, lower power-consuming instruction sequences during critical 
phases, or may perform arbitrarily sophisticated power/performance optimizations, 
possibly utilizing hardware assists); (ii) model data will be used by hardware adap-
tation policies to reconfigure micro-and macro-architectural structures; (iii) the 
PMC data and analytic models will be adapted to perform system-wide adaptation 
in hardware and software.

Finally, in the context of a multicore implementation of the ERA reconfigurable 
platform, the OS will be called to schedule concurrent applications across multiple 
cores. Hardware will provide key monitoring information on application behavior 
(functional unit utilization, memory intensity, temperature, and the like). In this 
case, reconfiguration and scheduling decisions must be taken in concert since one 
affects the other. Simple scheduling decisions (e.g., not to run a particular applica-
tion on a particularly configured core) can be determined in hardware, for instance 
if the core has more resources than the application can fully use, or far too few 
resources for the application to perform well, but deciding which applications to 
place where or how to configure the overall available resources to maximize the 
benefits for the workload as a whole will likely require a more global view of the 
system. The OS can keep monitored application information as part of each process 
state. It can then adapt an application’s current core to best suit its performance and 
power requirements. On a system level, the OS can employ simple economic mod-
els to co-optimize reconfiguration and scheduling for power and performance across 
all running applications.

All these modifications are in line with the overall strategy of the industrial part-
ners of the consortium. The usage of different accelerators is a common place in 
STMICRO products, but the problem of adapting the platform for different markets 
with different accelerator in the shortest possible time is unfortunately also present. 
Hence, the ERA project is targeting a real life problem, whose solution might have 
a major impact in the way embedded systems are designed in the EU.
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10.3  Main Applications

Objective ICT-2009.3.4 “Embedded Systems Design” puts a strong focus on the 
development of a novel (generic) embedded systems design method that can be 
applied to several application areas. In the ERA project we develop a platform that 
can adapt itself through coarse-grain reconfigurable hardware to tailor the hardware 
itself for changing environments and needs of the applications running on the plat-
form for different application markets and platform usage.

The proposed ERA platform can provide adaptability at different abstraction lev-
els: optimization of application software at design time, OS control and optimization 
at run time to cope with changing conditions, and hardware adaptation at run time to 
efficiently tune its performance to the application or OS needs and taking into account 
power budgets. However, the hardware resources, thanks to their regularity, can also 
be used as adaptive spare parts, and hence increase the fault tolerant capabilities of 
the platform. This additional capacity can then be used either in highly reliability 
demanding markets, like the automotive one, or in consumer markets when the hard-
ware uses the ultimate technology, which is likely to have many errors and a low 
yield (that should be increased). Finally, to exploit the adaptability of the proposed 
ERA platform, software tools will be made available to achieve this.

As for the application set, the ERA platform targets those that present the char-
acteristics described as follows.

Heterogeneity: as an adaptive platform is the target, the goal of the ERA project 
itself concerns covering different heterogeneous applications. Heterogeneity in the 
present context refers to applications that require different hardware resources dur-
ing different times. For example, a modern cell phone must deal with audio, video, 
and baseband processing, and for each of these tasks different accelerators are called 
in. The demonstrators chosen to validate the platform prototype are a good example 
of such heterogeneity coverage since we plan to optimize not only different applica-
tions that compose a modern cell phone, but also the operating system that is run-
ning on top of the platform. Additionally, the platform will allow for a mixture of 
heterogeneous components.

Predictability of non-functional properties such as performance and power con-
sumption: one of the main goals of the ERA platform is to determine the precise 
performance needs of the applications that we investigate after which we will deter-
mine the “best” possible set of adaptive hardware component to achieve those goals. 
Monitoring of the performance and power are key elements within the project to 
allow adaptability at the three mentioned levels (application, OS, and hardware) to 
reach the required performance levels with the provided power budget.

Adaptability and self-awareness for coping with uncertainty, upgrades of com-
ponents, and self configuration concepts: besides being able to be controlled by the 
OS (and hence based on a previously defined and coded in the OS optimization 
strategy), in the ERA project the platform can adapt to different code execution 



24710 ERA – Embedded Reconfigurable Architectures

scenarios also in an automatic fashion. This hardware based adaptation will be 
 performed at different blocks, covering communication and processing. The overall 
strategy for dynamic optimization of the communication blocks is to use perfor-
mance monitors that can advise the internal control system to increase resources of 
a certain channel of the used NOC in order to avoid congestion, while reducing 
resources that are not being effectively used in other channels. For the processing 
blocks, the idea is to allow monitoring of the executed code, and by using dynamic 
strategies like hardware DLLs or binary translation change the amount of resources 
that are being used at a certain moment of time. This adaptation may demand extra 
resources from the memory subsystem that must also respond with adequate band-
width for the new performance or power node.

10.4  Experimental Results

In this section, we will show some results that sustain the basic claim of this project, 
that is, the clear need for an adaptive and dynamically reconfigurable platform. 
Most of the initial examples have been taken from the MiBench set.

10.4.1  Processor (ILP and TLP)

Currently, there is a big discussion about the amount of ILP and TLP that should be 
supported by the underlying platform. In the ERA project both are supported. 
Variable ILP can be supported by changing the VLIW issue width, while TLP is 
supported by activating several heterogeneous VLIWs.

Table 10.1 shows, for different applications, how TLP and ILP change for differ-
ent applications, and hence the need for a reconfigurable fabric. The benchmark set 
covers general-purpose, embedded and parallel applications. The second column in 
Table 10.1 shows the mean basic-block size, as an indicator of potential ILP. It can 
be observed that each application has a different number of potentially parallel 
instructions, and hence changing the available ILP could lead to either performance 
or power gains.

The last column in Table 10.1 shows the total amount of executed instructions in 
an in-order processor. One can see that the distribution of code among threads has a 
huge variability (even in the same domain), and hence to cover several applications 
one must also provide a different number of active processors. Moreover, when 
sequential code is being executed, turning off processors and their clock network 
might lead to power efficiency, since no acceleration is possible with simple and 
low-power techniques.

This scenario claims for an adaptive platform as in the ERA proposal to find the 
optimum spot of the power-performance curve.
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10.4.2  Memories

In order to optimize memory power, one must have an idea about the access pattern 
present in different applications. This can be achieved by observing the locality of 
the references of the target applications. In the initial screening of the MiBench 
applications we realized that the locality of references allows one to reduce the leak-
age power consistently in comparison to previous solutions (“improved drowsy 
cache” [2]).

Therefore, a detailed investigation of the behavior of the djpeg application was 
done to verify whether it contained the potential for reconfiguration based on the 
distribution of strides when accessing data memory. Once the access pattern (the 
frequency of strides) is known, it can be used to reconfigure the cache by switching 
off parts of it [2], or by changing its size.

In order to extract the phases that may exist in a program, the execution is 
divided into intervals – sections of continuous execution of a program. In our 
example, we used intervals with length varying from one million instructions to 
one billion instructions. Intervals are then grouped into phases using SimPoint 
tool [3] in a way that each phase contains intervals with similar behavior (similar 
memory access patterns in this case). SimPoint uses k-means clustering in order 
to split program behavior into phases. K-means clustering takes a set of points in 
n-dimensional space and splits them into clusters by using distance between 
points as a metric for similarity (points with small distance are considered 
similar).

To characterize each interval as a point, we use frequency vectors: The djpeg 
binary that is executing in the simulator is instrumented at translation time so that 
each time an access to memory occurs the difference in address between the current 
access and the previous access is calculated (in words), and the corresponding ele-
ment of the frequency vector is incremented. For example, if current access is a load 
from the address 0 × 1,000,000 and the previous was the store to 0 × 10,000,004 the 
difference is one word and the element at position one is incremented. The maxi-
mum stride that is recorded is 1,024: the element at the position 1,023 will contain 
the number of memory accesses that had the stride 1,024 or bigger. At the end of 
each interval, the vector is saved, and all its elements are reset to zero. The set of 
these vectors is then passed to SimPoint. To perform the clustering, SimPoint con-
siders each vector as a point 1,024-dimensional space and performs k-means clus-
tering of the set of intervals. The analysis performed with the interval length of one 
million instructions discovered nine different clusters (Fig. 10.2). As the length of 
intervals increases, less phases are discovered - for the interval length of one billion 
instructions SimPoint does not discover any difference among intervals of 
execution.

The data shown in Fig. 10.2 clearly sustain the fact that, as there are different 
memory access patterns as the program is being executed, there is a requirement for 
variable memory bandwidth and locality policy, and thus changing these parameters 
one might achieve huge gains on power efficiency in the ERA platform.
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We plan to further expand this analysis by collecting the statistics from > multiple 
sources and combining them to get a comprehensive view of the application behavior 
[4]. Data will be collected from measurements taken from emulated system (QEMU), 
from existing hardware and from ILP statistics generated by the compiler.

10.4.3  Network

In order to show detailed behavior of the communication patterns inside an MPSOC, 
we simulated four examples of real applications that can be found in Fig. 10.3. Each 
node represents a task, and each arc is weighted by the communication rate among 
tasks in Mbytes/s. In all simulations we used the SOCIN NOC [5], and used a fixed 
size buffer capable of storing four flits per output channel. The applications used were 
the MPEG4, VOPD [6], MWD (Multi-Window Display) [7] and Xbox [8], all with 12 
cores, but with different communication patterns, as represented in the bandwidth of 
each link depicted in Fig. 10.3. In this figure, arcs in MPEG4, VOPD and MWD show 
rates in MB/s, while arcs in the XBOX application show rates in GB/S. A cycle-accu-
rate traffic simulator in Java was utilized to evaluate the network hotspots and the 
average latency using the reconfigurable and original routers. The distribution of the 
cores in the NoC was specified in accordance with the communication needs of the 
cores, reflecting a design time choice, being based on the original application.

Figure 10.4 shows the mean efficiency of MPEG4, VOPD, MWD and Xbox 
when mapped to a 4 × 3 NoC with homogeneous buffer sizes. In this report, efficiency 
represents how many buffer units are being appropriately used, in accordance with 

Fig. 10.2 Phases detected during execution of djpeg using the interval of one million instructions. 
X-axis shows the number of executed instructions while the y-axes shows the cluster that the inter-
val belongs to (nine clusters are discovered in total)
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Fig. 10.3 MPEG4 (a), VOPD (b), MWD (c) and Xbox (d) task graphs

the necessity of the application. The efficiency results in Fig. 10.4 were obtained in 
accordance with Eq. 10.1,
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where the reference value has been obtained by using the best buffer distribution for 
a certain performance level.

Figure 10.4a presents the efficiency considering all channels of the network with 
the same buffer depth, and Fig. 10.4b shows the efficiency using an heterogeneous 
NoC, where each router might have a different number of buffers compared to oth-
ers router, but all channels inside a router having the same number of buffers (achiev-
ing optimal communication throughput for a given power budget). In both cases, 
one can observe that the routers use excessive buffers in some channels, since not 
all channels present the same communication rate. In such cases, the extra buffer 
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units of the channel will consume unnecessary area and power. The network used in 
these experiments is a mesh-2D with XY-routing algorithm, handshake flow control 
and wormhole-switching mechanism [5]. Each input channel has a FIFO for storage 
of the flits. The FIFO size is defined at design time, and all channels have the same 
FIFO size.

One can see in Fig. 10.4a that, using a homogeneous router with the buffers sized 
to the best performance case, around 33% of the buffers slots are utilized. Similarly, 
in Fig. 10.4b only 54% of buffer slots have been used in the mean. However, they 
are nevertheless consuming power, but are not contributing to the reduction of the 
latency or the number of hotspots in the network.

Again, the concept of adaptability must be present for one to use the best com-
munication fabric with the lowest possible power budget.

10.5  Summary of Proposed Innovations

As a means to show the effectiveness of the adaptive platform, in the ERA project 
commercially available FPGAs are used to demonstrate the concept. It is not our 
goal to devise new low-power FPGA structures, but instead propose a platform that 
can benefit from different types of reconfigurable hardware. The reasons for this 
prototyping option are as follows:

Cost-effectiveness: The NRE (non-recurring engineering) costs of FPGA designs 
is an order of magnitude lower than the NRE costs of ASIC designs and this is only 
expected to increase with newer technologies. Additionally, the costs of design tools 
targeting FPGAs are much lower than those targeting ASICs. This simply means 
that ASIC designs are increasingly only viable for mass-market embedded products 
and FPGA-based products will become more commonplace in the near future from 
a pure design cost perspective.

Time to market: The utilization of reconfigurable hardware is already commonplace 
as in the ASIC design trajectory; reconfigurable hardware is being utilized to perform 
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Fig. 10.4 Efficiency results (a) using the same buffer depth for all channels of the NoC and 
(b) using the same buffer depth for all channels of the same router, but with a different buffer depth 
specified to each router
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design verification. To shorten the time to markets windows, it is increasingly 
becoming more economical to ship FPGAs in actual products and forego the ensu-
ing ASIC design trajectory. This is a natural progression from hand-designing ASIC 
chips towards cell-based ASIC designs with the cells now being placed on recon-
figurable hardware structures. This also fits perfectly with the programmability 
trend as the larger more complex circuit designs and processor cores can nowadays 
be accommodated on the latest FPGA chips.

Performance: The performance of FPGAs is increasing at a much faster rate than 
their ASIC counterparts due to their very regular structure. Therefore, even though 
FPGAs are much slower than ASICs when implemented in the same technology, it 
is common that in actual product development, the utilized FPGA chips are at least 
one generation ahead of ASICs. This considerably alleviates the speed disadvan-
tage. Especially when one considers that FPGAs nowadays also contain many dedi-
cated circuitry to further improve the speed of commonly used functional elements, 
e.g., multipliers and on-chip memory. Moreover, the increased logic density also 
translates into increased memory bandwidth. This could allow the industrial part-
ners to use the prototype of the proposed platform in a commercial way much before 
any dedicated ASIC is ready.

Power consumption: The power consumption of FPGAs is still considerably higher 
than their ASIC counterparts, but methods to save power targeting FPGAs start to 
gain focus, and our project intends to deal with power issues from different perspec-
tives. Finally, low-power FPGAs are starting to make their appearance.

Flexibility: Flexibility by utilizing reconfigurable hardware can be achieved in 
many ways and many research projects have demonstrated this. The functionality of 
the hardware can be changed through reconfiguration or reconfigurable hardware 
structures or programming the softcore(s) (or in some cases: fixed processing cores), 
This allows for “in-field” updates of functionality and maybe more importantly 
enabling the possibility for designers to address design and process variability later 
on in the product cycle. This further reduces the design and verification costs.

From the perspective of an integrated design manufacturer such as STMICRO, 
one key factor for the success of future consumer products design, is to provide a 
solution to the faltering ability of existing silicon design and verification method-
ologies to keep up with the exponential increase of chip capacity and the increased 
pressure on architects and designers alike to develop very complex hardware in a 
decreasing amount of time. As a result the number of products that will rely on a set 
of predefined architecture template will greatly increase. The availability of a pre-
characterized parametric architecture and programmable engine platform enables 
faster design space exploration and minimize critical late design respins during the 
physical implementation and validation phases. In order to make this possible, 
industrial design teams would need to have access to technologies such as the one 
focus of this proposal; so that programmable accelerator architectures best suited to 
an application domain could be easily prototyped and selected from a range of well 
defined features whose fast-prototyping platform is already available. This would 
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make a significant difference in terms of cost reduction for the total NRE and allow 
gaining a competitive advantage over designs that adopt a more traditional conser-
vative approach to system level design.

The architecture proposed in the ERA project will allow Evidence to develop 
innovative solutions in the market of reconfigurable systems, allowing Evidence to 
acquire advanced knowledge in the usage of FPGA for signal processing and 
 multimedia systems together with Embedded Linux microcontrollers. The frame-
work developed as part of the ERA Project will be exploited by Evidence with the 
prototype study of an embedded board based on a Xilinx FPGA, as well as with 
applications in the signal processing area with key Evidence customers.

The technology developed for software support of reconfigurable embedded 
architectures in the ERA project will allow IBM to offer advanced tool-chain solu-
tions that target changes in the underlying platform efficiently, thereby increasing 
the overall utilization and performance-per-power characteristics of the system. In 
particular, IBM will benefit from advanced and innovative compiler optimizations 
which leverage the capabilities of target platforms.

Additionally, we will combine all the solutions proposed in this project into a 
demonstrator platform that we expect will allow the industrial partners fast access 
to new products developed on top of it. The intended platform will serve several 
purposes:

Quick development platform for the industry: the clear interfaces defined in this 
project should allow the industrial partners to take from the platform everything 
they need and still incorporate their own IPs. Moreover, for low volumes even the 
prototype can be used as a commercially viable product, since the consortium will 
use available FPGA technology to validate its contribution.

Academic purposes: the ERA platform can be easily used to build different 
instances of embedded processing solutions and we foresee and will actively pursue 
the possibility of incorporating the ERA platform as a teaching tool in embedded 
courses or labs.

Having stated the main objective of the ERA project and the sub-objectives in 
order to reach it, we can now summarize the main deliverables of the ERA project 
as follows:

 1. A hardware prototype reconfigurable multi-core system: a hardware platform 
prototype, encompassing a reconfigurable VLIW processor, reconfigurable 
memory, and reconfigurable NoC, that can be used as a demonstrator of the adap-
tive properties.

 2. A software platform prototype, that working together with the hardware can provide 
adaptability in a seamless fashion for the platform user and software designer:

A supervisor coordinating the reconfiguration operations, providing the •	
needed trade-off between application quality-of-service and resource usage;
Exploration of profile-directed compiler optimizations to increase perfor-•	
mance and reduce power by scheduling reconfiguration instructions, and 
scheduling several cores;
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Portable compilation scheme capable of adapting to changes in the underlying •	
architecture efficiently.

 3. A set of applications identified that will benefit the proposed ERA platform. As 
the main test case of the platform, several programs that are used in portable 
phones will be used as our driving benchmark.

Here we list some of the main areas where we expect that the ERA project is 
going to advance the state of the art.

Reconfigurable processors. Most embedded devices will employ complex system-
on-a-chip (SoC) platforms, based on several different sub-systems, where each one 
is built to optimize a specific application domain (DSP, 3D-graphics, etc.). However, 
there is no easy way to anticipate all the software applications for an embedded 
system, which means that a means for dynamic adaptation must be available.

Fine-grain reconfigurable computing where one can create many different cir-
cuits on an FPGA-like substrate available on chip, seemed a very promising 
approach to solve the need of dynamic adaptation. Indeed, many fine-grain recon-
figurable approaches have proven to be a good option for reducing the design time 
of specialized functions. Many successful examples have shown good perfor-
mance improvements and energy savings [9–15]. However, the fine-gain recon-
figurable approach has been plagued by two major problems: virtualization of the 
reconfigurable hardware (especially managing its large state) for use in a multi-
programmed environment (multiple concurrently-running applications) and a 
blurring or breaking of the hardware/software interface at the Instruction Set 
Architecture (ISA) level that complicates programming, compilation, toolsets and 
run-time systems. It is exactly in these areas where most of the effort is spent for 
the development of fine-grain reconfigurable systems. With the advent of multi-
core processors and MPSoCs the situation became increasingly complex since the 
need to manage several different accelerators and at the same time minimize 
energy and ensure performance at the global system level became a necessity. 
Piperench [9], Molen [10], GARP [11] and Raw [12] are well known examples 
that extend the underlying instruction set. Such reconfigurable machines rely on 
the compiler to detect application “hotspots” and optimizing them by creating 
new specialized instructions. Despite the implications of its use, static code detec-
tion of potential reconfigurable accelerators is still being explored. However, 
when a compiler is responsible for finding possible candidates for optimization, 
two main problems emerge, particularly concerning the OS: besides the necessity 
of having the OS source code, the room for optimization is restricted to static code – 
dynamic library optimization is not possible, since when and how much the libraries 
will be used is not known before run-time.

More recently, reconfigurable approaches have been presented, where the focus 
was on dynamic hotspot detection. The pioneer approach is Warp [13]. This tech-
nique uses a non-trivial CAD algorithm to transform the sequences of instructions 
to a control flow graph. Then, it synthesizes the code and maps the circuit onto a 
simplified FPGA structure. As another example, CCA [14] (Configurable Computing 
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Accelerator) provides both dynamic and static detection. CCA is a tightly coupled 
coarse grain reconfigurable array, composed by simple functional units, coupled to 
an ARM processor. These examples of reconfigurable hardware are restricted to 
optimize standalone user applications, with specific hotspot optimizations and with 
hotspots known at design time –something that is becoming less and less frequent. 
In [15] one can find a coarse grain system that covers acceleration of the whole 
software code, using dynamic techniques and a coarse grain fabric.

The ERA project advances the state-of-the art by taking another route in recon-
figurability: instead of trying to accelerate applications by reconfigurable function-
ality (which is hard to use) ERA relies instead on architectural reconfigurability for 
optimizing applications in terms of performance and power. The processor (as a 
single core or as a collection of cores on the chip) is reconfigured to match the com-
putation needs of the application.

Memory Hierarchy Reconfiguration. Similarly to processor reconfiguration, the 
memory system is also reconfigured for the application. There is a significant body 
of work concerning the reconfiguration of the memory hierarchy, primarily for 
high-performance computing but also with some sparse examples for embedded 
computing. Similarly to processor reconfiguration, caches have been a prime target 
for resizing to save power. Although it is always better to have more cache, in many 
cases using much less cache can save considerable power while giving up very little 
in performance. There are several proposals for resizing the cache to fit program 
needs, most important among them: Variable L1/L2 division [16], Selective Cache 
Ways [17], the Accounting Cache [18], and Miss Tag Resizing for CAM-Tag Caches 
[19] (which is well suited for embedded architectures). These techniques differ on 
the memory partitioning technique used (e.g., partitioning at the memory bank/seg-
ment level, cache-way level, or even within a bank using bit-line segmentation), and 
the policy used to drive the partitioning. Both within and across such techniques 
there are significant differences in power and performance depending on the target 
application. The policies proposed to drive such techniques are tuned to deliver the 
desired results for some benchmark suite so there is no clear consensus what works 
and what does not for our target application domain. Furthermore, these cache resiz-
ing techniques were proposed in isolation without taking into account any possible 
processor reconfiguration. There are very few proposals for holistic reconfiguration 
of both the processor and the cache hierarchy, but even those do not take fully into 
account the complex interaction of the joint reconfiguration of these two compo-
nents; they use instead blanket performance/power feedback policies.

Beyond resizing, critical role in the power/performance of the cache hierarchy 
play the techniques for reducing static power dissipation (DVFS [20] and/or decay 
techniques [21]) and techniques to optimize the switching activity (dynamic power) 
for well known cache architectures. The toolkit available for optimizing the mem-
ory hierarchy includes [20]: various power-efficient associative cache architectures 
(phased caches, way prediction, etc.), filter caches, loop caches, and trace caches, 
data compression techniques (value locality compression, zero compression, etc.), 
and coherence optimization techniques.
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In the ERA project the reconfigurable memory architecture is based on the needs 
and requirements of our target application domain, i.e., embedded applications. 
Mechanisms for memory reconfiguration will be unified according to the synergy 
they show (again in relation to embedded applications). Furthermore, the manage-
ment policies for such reconfiguration techniques will be application driven, rather 
than blanket policies that cater to the general case but can be rather inefficient for 
specific applications or even individual application phases. We will use the necessary 
hardware monitoring coupled with the application-fed requirements to construct 
application-driven policies that can achieve various user objectives. Of critical impor-
tance is that these policies will work in concert with the processor reconfiguration 
proposed in our project. Our holistic approach will be expanded to cover multipro-
cessor SoCs and their memory hierarchies, multiprogramming in such environments 
(e.g., multiple programs running concurrently and sharing the chip resources), and 
reconfiguration of the communication infrastructure (including cache coherence pro-
tocols and networks-on-chip) specifically for parallel applications running on multi-
ple heterogeneous cores and/or accelerators.

In the ERA project the whole compilation tool-chain can act as the mediator 
between the features and requirements exposed by the applications (e.g., memory 
locality, memory bandwidth requirements, and processing needs, as well as execu-
tion phases, multi-threaded behavior, communication, and synchronization) and the 
reconfiguration potential of the architecture. In particular, different modules of the 
architecture will have the ability to reconfigure themselves according to the (in-
hardware) perceived runtime conditions and resource usage. In the integrated 
approach of ERA we complement this hardware monitoring and adaptation by 
leveraging software development and tuning tools that are able to implement a range 
of optimization strategies of different complexities, aiming to induce the most suit-
able architectural reconfigurations that match the application requirements during 
runtime. Using this approach, the optimization tools can take advantage of the 
global view of the architecture together with the application structure and needs, in 
order to trigger profitable reconfiguration actions.

10.6  Conclusions

In the ERA project, we are addressing the power and memory walls that bottlenecks 
in the design of embedded systems to satisfy the demand for more performance. 
More specifically, we are focusing on the design of the embedded processor and its 
environment. We identified a clear trend in the design of embedded processors that 
is moving away from application-specific implementations to more general-purpose 
approaches. This is not to say that application-specific implementations are no lon-
ger important, but they are only (economically) viable when there is a large mass 
market to amortize the design costs or when the “best” solution is sought after 
(independent of costs).



258 S. Wong et al.

In this trend, we strongly believe that reconfigurable hardware will play an 
important role as it is capable of providing adequate performance (for most embed-
ded applications) while maintaining a good level of flexibility that is needed in 
current-day embedded systems market, in which time-to-market times are shrinking. 
Of course, the mentioned power and memory walls are also present in the reconfigu-
rable embedded processor scenario, and in the ERA project, we are addressing them 
at the same time. We believe that reconfigurability can bring forward new solutions 
to allow us to scale the walls. As the embedded market is moving towards a more 
structured design approach, we focus in the ERA project on three main elements: 
computing elements, memory elements, and networking  elements. For each type of 
element, we will propose new solutions on how to exploit reconfigurability to pro-
vide more performance, but at the same time limit power consumption and better 
scale memory requirements. In this chapter, we also provided some evidence why 
we believe that our approach will be successful, and the effective need of reconfigu-
ration in different structures to bypass the memory and power wall. In the end, one 
of the goals of the ERA project concerns building a proof-of-concept demonstrator 
to show the benefits of our approach and which can be immediately used by the 
industry for prototyping purposes.
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