
Characterizing Phase Behavior for
Dynamically Reconfigurable Architectures

Zhibin Yu, Nikola Puzovic, Antoni Portero, Roberto Giorgi

Dept. Ingegneria dell’ Informazione, University of Siena, Via Roma 56, 53100 Siean, Italy

ABSTRACT

Previous researches have shown most programs have phase behavior. We would like to take
advantage of the phase behavior of applications to dynamically reconfigure an embedded
platform in order to achieve more energy efficiency and performance. In this study, we first
outline some aspects of the phase behavior with emphasis also on the influence of the
Operating System (OS). We developed a tool chain to characterize the phase behavior of
workloads (benchmarks) for embedded reconfigurable systems. Eight typical workloads are
analyzed by using our tool chain. The results show that i) phase behavior can be relevant in
workloads for embedded reconfigurable systems; ii) phase behavior (including the number
of phases and the time spent in each phase) is reflected in several types of system metrics; iii)
there are more phases when OS activities are involved for the same program; iv) the time
spent by each phase of a program varies in a wide range. We believe the outcomes of this
work can be used to guide the dynamic reconfiguration of components in embedded
reconfigurable systems.

KEYWORDS: Workload Characterization; Program Phase; Reconfigurable Computing

1 Introduction
Recently, embedded reconfigurable architectures have gained a strong momentum. However, it
is still a challenge to know when and how to reconfigure the hardware resources of these
systems dynamically. One of the main reasons for the problem is that applications for
embedded reconfigurable systems have a wide range of behaviors. Therefore, it is vital to
accurately characterizing the workload behavior.
Previous researches have demonstrated most programs for general purpose CPUs such as SPEC
CPU benchmarks have phase behavior [1][2][3]. However, it is not clear yet whether workloads
for embedded reconfigurable systems also have the similar behavior, especially when operating
system activities are involved. Although there are some studies have been done on
characterizing phase behavior for embedded systems, they still did their experiments by using
SPEC CPU benchmarks such as SPEC CPU 2000 [4][5].
A program phase is a set of intervals within the program’s execution that have similar behavior
(e.g. in terms of required performance) regardless of temporal adjacency. The phase behavior
provides an indispensable criterion for the dynamic reconfiguration of embedded
reconfigurable systems. For example, the architecture may be dynamically reconfigured at
runtime to provide higher performance or to save power based on phase behavior. Therefore, it

is crucial to characterize the phase behavior of the workloads for embedded reconfigurable
systems.
In this work, we develop a tool chain to characterize the phase behavior of workloads for
embedded systems. Eight workloads [8] such as AC3, MPEG2 are characterized. Since our target
embedded reconfigurable system is a multi-core architecture which employs VLIW processors,
the effects of OS activities must be taken into account as well. We compare the phase behavior
of the same program with and without OS activities. In addition, we employ the xSTSim which
is a VLIW processor simulator to measure the time ratio spent in each phase. This information
can be used to guide the dynamic reconfiguration of embedded reconfigurable systems.

2 Related Work
There is a large amount of researches have been done on characterizing program behavior for
general purpose processors. However, quite few works have been done for embedded
dynamically reconfigurable systems.
The most recent benchmark suite for reconfigurable architectures is GroundHog [6]. P. Jamieson
et al. designed these benchmarks to help measure and optimize power consumption in mobile
domain. J. Poovey et al. characterized the EEMBC benchmark suite for MIPS, PowerPC, x86,
and PISA architectures [7]. They used micro-architecture independent metrics such as dynamic
instruction percentages (integer, floating-point, load, store, branch, e.g.) and micro-architecture
dependent properties such as cache miss rate and branch mis-prediction ratios to characterize
the benchmarks. Their primary contribution is the analysis of the similarity of performance
behavior among the programs. They did not analyze the phase behavior while our work does.
F. Vandeputte et al. exploited program phase behavior for energy reduction on multi-
configuration processors [4]. P. Nagpurkar et al. employed the phase-aware sampling
techniques to efficiently profile remote resource-constrained devices [5]. Although these
researches studied the program phase behavior for reconfigurable systems, they did their
experiments by using SPEC CPU 2000 benchmarks which is targeting for general purpose
processors. Our work focuses not only on the general phase behavior characterization but also
on more specifically the workloads for embedded reconfigurable systems.

3. Metrics and Algorithms
Since our target platform is a reconfigurable system in which the micro-architectures may vary
when programs are running, we mainly choose micro-architecture independent metrics to
characterize phase behavior. However, the time information is also very important for the
reconfiguration of our embedded reconfigurable system, we use one micro-architecture
dependent metric in our characterization.
For the phase characterization of memory access, we employ global stride, local stride, working
set size, and stack distance as our metrics. These metrics are micro-architecture independent.
The micro-architecture dependent metric is cycles per bundle (CPB). As mentioned before, our
target platform employs VLIW cores and the VLIW cores issue instructions as bundles. We,
therefore, use CPB as the metric to study whether there is still phase behavior on VLIW
processors and the time ratio spent in each phase if available.
Generally, the two primary clustering approaches are partitioning and hierarchical. Partitioning
algorithms choose an initial solution randomly and then use iterative updates to find a better
solution. K-means and Gaussian Expectation Maximization are popular algorithms in this

family. The run time of these algorithms tends to be linear in the size of the dataset. Hierarchical
algorithms either combine together similar points or recursively divides the dataset into more
groups. The runtime of them tends to be quadratic in the size of the dataset. Since k-means is a
very fast and simple algorithm that yields good results [1], we choose k-means as our algorithm
to detect phase behavior.

4. Experiments and Results
To quantify how much time spends in each phase, we use a simulator named xSTSim from ST
Microelectronics. The processor of the xSTSim is configured as ST231 which is a VLIW
processor from the same company. As a beneficial side effect, we also observed the program
phase behavior on VLIW processors. We also modified an emulator QEMU to characterize
phase behavior using the metrics mentioned above. Since space is limited, we do not show the
results in this paper. Only the time information of phases and the impact of OS on them are
reported.

 phase1 phase2 phase3 phase4
0

0.1

0.2

0.3

0.4

0.5

tim
e

ra
tio

10000
1000
100

Figure 1: The time ratio of each phase in program AC3 when different measurement

granularities are used. The CPB (Cycles Per Bundle) is measured in three granularities which
are 10000, 1000, and 100 bundles.

Figure 1 shows the time ratio spent in phases of AC3. A larger time-ratio means that a program
spends more time in the corresponding phase (ratio varies between 0 and 1). Although the
number of phases is the same for the three different measurement granularities, the time spent
in the same phase is much different. The time ratio of phase 1 is less than 5% when the CPB is
measured per 10,000 bundles while it is higher than 30% when the CPB is measured per 100
bundles. On the contrary, the time ratio of phase 4 is higher than 40% when the CPB is
measured per 10000 bundles while it is lower than 5% when the CPB is measured per 100
bundles. This is because the length of phases is not a multiple of the measurement granularity.
Each phase has its natural boundary in a program. Therefore, it is very important to select a
proper measurement granularity when we reconfigure the system resources based on phase
behavior. We leave this issue as a future work.
Figure 2 shows the number of phases with OS activities of DJPEG. There are 10 distinct phases
in the program and the instructions belong to the same phase may not be adjacent. Figure 3
shows the phases of DJPEG detected by the user-mode of our tool chain. Comparing the two
figures, we found there are more phases when OS activities are involved. The other benchmarks
show the similar results. This finding indicates that we should take into account the OS
activities when the resources are dynamically reconfigured based on phase behavior.

5. Conclusions
To help reconfigurable systems reconfigure their resources dynamically, we study the phase

Figure 2 The detected phases of djpeg by

using global stride with OS activities
Figure 3 The detected phases of djpeg by
using global stride without OS activities

behavior of workloads for them. First the OS activities have a significant impact on phase
behavior of our experimented benchmarks, indicating we must take into account the OS
activities when reconfiguring the system resources. Second, the time spent in each phase varies
wildly, suggesting that it is not necessary to reconfigure resources for the short phases. Third,
different number of phases may be detected for the same program by using variant metrics.
This implies we should choose the metric carefully when we setup the reconfiguration
strategies. Finally, we find the measurement granularities used in program phase detection
significantly affects the results, including the number of phases and the time spent in each
phase of a program.

Acknowledgements
This work is partially funded by the European FP7 project ERA, ID: 249059, http://www.era-
project.eu/ and HiPEAC IST-217068.

References
[1] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to find periodic behavior
and simulation points in applications,” in Proc.Int. Conf. Parallel Architectures and Compilation
Techniques., Sept. 2001, pp.3-14.
[2] T. Sherwood, E. Perelman, G. Hamerly, and B. Carder, “Automatically characterizing large scale
program behavior,” in Proc. Int. Conf. Archiecture Support for Programming Languages and Operasting
Systems., Oct 2002, pp.45-57.
[3] A. S. Dhodapkar, and J. E. Smith, “Comparing program phase detection techniques,” in Proc. Int.
Symp. Micro-architecture., Dec 2003, pp.217-227.
[4] F. Vandeputte, L. Eeckhout, and K. D. Bosschere, “Exploiting program phase behavior for energy
reduction on multi-configuration processors,” Journal of Systems Architecture., vol.53, no.8, Aug. 2007,
pp.489-500.
[5] P. Nagpurkar, H. Mousa, C. Krintz, and T. Sherwood, “Efficient remote profiling for resource-
constrained devices,” ACM Trans. Architecture and Code Optimization., vol. 3, no.1, Mar. 2006, pp. 35–
66.
[6] P. Jamieson, T. Becker, P. Cheung, W. Luk, T. Rissa, and T. Pitkanen, “Benchmarking and evaluating
reconfigurable architectures targeting the mobile domain,” ACM Trans. Design Automation. Elect. Syst.,
vol.15, no. 2, Feb. 2010, pp.1-24.
[7] J. Poovey, M. Levy, S. Gal-On, and T. Conte, “A Benchmark Characterization of the EEMBC
Benchmark Suite,” IEEE Micro., vol.29, no.5, Sept. 2009, pp.18-29.
[8] N. Puzovic S. McKee R. Eres A. Zaks P. Gai S. Wong R. Giorgi, "A Multi-Pronged Approach to
Benchmark Characterization", IEEE Int.l Conf. on Cluster Computing (CLUSTER2010), ISBN:978-1-4244-
8396-9, Heraklion, Greece, Sept. 2010, pp. 1-4

