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ABSTRACT 
 
Previous researches have shown most programs have phase behavior. We would like to take 
advantage of the phase behavior of applications to dynamically reconfigure an embedded 
platform in order to achieve more energy efficiency and performance. In this study, we first 
outline some aspects of the phase behavior with emphasis also on the influence of the 
Operating System (OS). We developed a tool chain to characterize the phase behavior of 
workloads (benchmarks) for embedded reconfigurable systems. Eight typical workloads are 
analyzed by using our tool chain. The results show that i) phase behavior can be relevant in 
workloads for embedded reconfigurable systems; ii) phase behavior (including the number 
of phases and the time spent in each phase) is reflected in several types of system metrics; iii) 
there are more phases when OS activities are involved for the same program; iv) the time 
spent by each phase of a program varies in a wide range. We believe the outcomes of this 
work can be used to guide the dynamic reconfiguration of components in embedded 
reconfigurable systems. 
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1 Introduction 
Recently, embedded reconfigurable architectures have gained a strong momentum. However, it 
is still a challenge to know when and how to reconfigure the hardware resources of these 
systems dynamically. One of the main reasons for the problem is that applications for 
embedded reconfigurable systems have a wide range of behaviors. Therefore, it is vital to 
accurately characterizing the workload behavior. 
Previous researches have demonstrated most programs for general purpose CPUs such as SPEC 
CPU benchmarks have phase behavior [1][2][3].  However, it is not clear yet whether workloads 
for embedded reconfigurable systems also have the similar behavior, especially when operating 
system activities are involved. Although there are some studies have been done on 
characterizing phase behavior for embedded systems, they still did their experiments by using 
SPEC CPU benchmarks such as SPEC CPU 2000 [4][5]. 
A program phase is a set of intervals within the program’s execution that have similar behavior 
(e.g. in terms of required performance) regardless of temporal adjacency.  The phase behavior 
provides an indispensable criterion for the dynamic reconfiguration of embedded 
reconfigurable systems. For example, the architecture may be dynamically reconfigured at 
runtime to provide higher performance or to save power based on phase behavior. Therefore, it 



is crucial to characterize the phase behavior of the workloads for embedded reconfigurable 
systems. 
In this work, we develop a tool chain to characterize the phase behavior of workloads for 
embedded systems. Eight workloads [8] such as AC3, MPEG2 are characterized. Since our target 
embedded reconfigurable system is a multi-core architecture which employs VLIW processors, 
the effects of OS activities must be taken into account as well. We compare the phase behavior 
of the same program with and without OS activities. In addition, we employ the xSTSim which 
is a VLIW processor simulator to measure the time ratio spent in each phase. This information 
can be used to guide the dynamic reconfiguration of embedded reconfigurable systems.  

2 Related Work 
There is a large amount of researches have been done on characterizing program behavior for 
general purpose processors. However, quite few works have been done for embedded 
dynamically reconfigurable systems.  
The most recent benchmark suite for reconfigurable architectures is GroundHog [6]. P. Jamieson 
et al. designed these benchmarks to help measure and optimize power consumption in mobile 
domain. J. Poovey et al. characterized the EEMBC benchmark suite for MIPS, PowerPC, x86, 
and PISA architectures [7]. They used micro-architecture independent metrics such as dynamic 
instruction percentages (integer, floating-point, load, store, branch, e.g.) and micro-architecture 
dependent properties such as cache miss rate and branch mis-prediction ratios to characterize 
the benchmarks. Their primary contribution is the analysis of the similarity of performance 
behavior among the programs. They did not analyze the phase behavior while our work does.  
F. Vandeputte et al. exploited program phase behavior for energy reduction on multi-
configuration processors [4]. P. Nagpurkar et al. employed the phase-aware sampling 
techniques to efficiently profile remote resource-constrained devices [5]. Although these 
researches studied the program phase behavior for reconfigurable systems, they did their 
experiments by using SPEC CPU 2000 benchmarks which is targeting for general purpose 
processors. Our work focuses not only on the general phase behavior characterization but also 
on more specifically the workloads for embedded reconfigurable systems.  

3. Metrics and Algorithms 
Since our target platform is a reconfigurable system in which the micro-architectures may vary 
when programs are running, we mainly choose micro-architecture independent metrics to 
characterize phase behavior. However, the time information is also very important for the 
reconfiguration of our embedded reconfigurable system, we use one micro-architecture 
dependent metric in our characterization. 
For the phase characterization of memory access, we employ global stride, local stride, working 
set size, and stack distance as our metrics. These metrics are micro-architecture independent. 
The micro-architecture dependent metric is cycles per bundle (CPB). As mentioned before, our 
target platform employs VLIW cores and the VLIW cores issue instructions as bundles. We, 
therefore, use CPB as the metric to study whether there is still phase behavior on VLIW 
processors and the time ratio spent in each phase if available.  
Generally, the two primary clustering approaches are partitioning and hierarchical. Partitioning 
algorithms choose an initial solution randomly and then use iterative updates to find a better 
solution. K-means and Gaussian Expectation Maximization are popular algorithms in this 



family. The run time of these algorithms tends to be linear in the size of the dataset. Hierarchical 
algorithms either combine together similar points or recursively divides the dataset into more 
groups. The runtime of them tends to be quadratic in the size of the dataset. Since k-means is a 
very fast and simple algorithm that yields good results [1], we choose k-means as our algorithm 
to detect phase behavior.  

4. Experiments and Results 
To quantify how much time spends in each phase, we use a simulator named xSTSim from ST 
Microelectronics. The processor of the xSTSim is configured as ST231 which is a VLIW 
processor from the same company. As a beneficial side effect, we also observed the program 
phase behavior on VLIW processors. We also modified an emulator QEMU to characterize 
phase behavior using the metrics mentioned above. Since space is limited, we do not show the 
results in this paper. Only the time information of phases and the impact of OS on them are 
reported.  
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Figure 1: The time ratio of each phase in program AC3 when different measurement 

granularities are used.  The CPB (Cycles Per Bundle) is measured in three granularities which 
are 10000, 1000, and 100 bundles. 

Figure 1 shows the time ratio spent in phases of AC3. A larger time-ratio means that a program 
spends more time in the corresponding phase (ratio varies between 0 and 1). Although the 
number of phases is the same for the three different measurement granularities, the time spent 
in the same phase is much different. The time ratio of phase 1 is less than 5% when the CPB is 
measured per 10,000 bundles while it is higher than 30% when the CPB is measured per 100 
bundles. On the contrary, the time ratio of phase 4 is higher than 40% when the CPB is 
measured per 10000 bundles while it is lower than 5% when the CPB is measured per 100 
bundles. This is because the length of phases is not a multiple of the measurement granularity. 
Each phase has its natural boundary in a program. Therefore, it is very important to select a 
proper measurement granularity when we reconfigure the system resources based on phase 
behavior. We leave this issue as a future work.   
Figure 2 shows the number of phases with OS activities of DJPEG. There are 10 distinct phases 
in the program and the instructions belong to the same phase may not be adjacent. Figure 3 
shows the phases of DJPEG detected by the user-mode of our tool chain. Comparing the two 
figures, we found there are more phases when OS activities are involved. The other benchmarks 
show the similar results. This finding indicates that we should take into account the OS 
activities when the resources are dynamically reconfigured based on phase behavior. 

5. Conclusions 
To help reconfigurable systems reconfigure their resources dynamically, we study the phase 



                                    

 
Figure 2 The detected phases of djpeg by 

using global stride with OS activities 
Figure 3 The detected phases of djpeg by 
using global stride without OS activities 

 
behavior of workloads for them. First the OS activities have a significant impact on phase 
behavior of our experimented benchmarks, indicating we must take into account the OS 
activities when reconfiguring the system resources. Second, the time spent in each phase varies 
wildly, suggesting that it is not necessary to reconfigure resources for the short phases. Third, 
different number of phases may be detected for the same program by using variant metrics. 
This implies we should choose the metric carefully when we setup the reconfiguration 
strategies. Finally, we find the measurement granularities used in program phase detection 
significantly affects the results, including the number of phases and the time spent in each 
phase of a program. 
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